

TERMORRESISTENCIAS RTD

GUÍA DE SELECCIÓN

Circuitos RTD de platino de 2, 3 y 4 cables

Es importante tener en cuenta la resistencia del cableado que conecta el RTD al equipo de instrumentación porque puede afectar la medición de la resistencia del RTD. Cuanto más largo y/o de menor el diámetro serán los cables, mayor serán la resistencia del cableado y los errores de medición. En el caso del circuito RTD de dos cables, poco se puede hacer para compensar el error de medición relacionado a la resistencia de cableado. Por esta razón, los RTD de dos cables solo son adecuados para longitudes cortas de cable y/o donde solo se necesita un valor aproximado de la temperatura.

Los RTD de tres cables son los más comunes para las aplicaciones industriales. Estos RTD usan un circuito de medición de puente de Wheatstone para compensar la resistencia del cableado. Sin embargo, la técnica de compensación se basa en la hipótesis de que la resistencia de los tres cables es idéntica y de que todos se encuentran a la misma temperatura ambiente.

Los RTD de cuatro cables son los más precisos ya que permiten compensar completamente la resistencia de los cables.

Conducción de la vaina

Este es el proceso por el cual la propia sonda conduce el calor desde o hasta el medio a medir. La profundidad de inmersión (longitud de la sonda que está directamente en contacto con el medio) debe ser tal que supera la longitud de detección (se recomienda el doble de la longitud de detección). En los casos de profundidad de inmersión insuficiente se puede ver grandes variaciones de temperatura entre el sensor y el entorno.

La profundidad de inmersión ideal se logra en la práctica moviendo la sonda hacia dentro o fuera del medio a medir de forma gradual hasta conseguir medir una temperatura sin variaciones.

Autocalentamiento

Con el fin de medir la caída de tensión a través del RDT, una corriente debe atravesarlo. Esta corriente de medición produce una disipación de calor en el sensor, lo cual resulta en un incremento de la temperatura indicada.

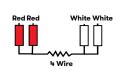
Es importante minimizar la corriente de medición tanto como sea posible del orden de 1mA o inferior. Si el sensor se sumerge en un líquido o gas que fluye, el efecto se reduce debido a la eliminación más rápida del calor.

Sin embargo, en un líquido o gas estático, el efecto puede ser significativo.El coeficiente de autocalentamiento E se expresa como:

$E = \Delta t / (R - I2)$

Donde Δt = (temperatura indicada) – (temperatura del medio)

R = resistencia Pt


I = corriente de medición

Código de colores de terminación IEC 751(1995)

Para sensores dobles, IEC 60751(2008) especifica la introducción de amarillo y negro (o gris) (en lugar de rojo y blanco como se muestra) para la resistencia de detección adicional.

Resistencia vs. temperatura y tolerancias de las resistencias de platino según IEC 751(1995)/BS EN60751(1996)

	Burtan and	Tolerancia					
Temperatura	Resistencia	Clase A		Clase B			
(°C)	(Ω)	(±°C)	(±Ω)	(±°C)	(±Ω)		
-200	18.52	0.55	0.24	1.3	0.56		
-100	60.26	0.35	0.14	0.8	0.32		
0	100.00	0.15	0.06	0.3	0.12		
100	138.51	0.35	0.13	0.8	0.30		
200	175.86	0.55	0.20	1.3	0.48		
300	212.05	0.75	0.27	1.8	0.64		
400	247.09	0.95	0.33	2.3	0.79		
500	280.98	1.15	0.38	2.8	0.93		
600	313.71	1.35	0.43	3.3	1.06		
650	329.64	1.45	0.46	3.6	1.13		
700	345.28	-	-	3.8	1.17		
800	375.70	-	-	4.3	1.28		
850	390.48	-	-	4.6	1.34		

Nuevas clases de tolerancia para resistencias según IEC 60751(2008)

Para resistenci	as de bobinado	Para resisten		
Clase de tolerancia	Rango de temperatu- ras válido °C	Clase de tolerancia	Rango de temperatu- ras válido °C	Valor de toleranciaª °C
W 0.1	de -100 a +350	F 0.1	de 0 a +150	± (0.1 + 0.0017 t)
W 0.15	de –100 a +450	F 0.15	de -30 a +300	± (0.15 + 0.002 t)
W 0.3	de –196 a +660	F 0.3	de -50 a +500	± (0.3 + 0.005 t)
W 0.6	de –196 a +660	F 0.6	de -50 a +600	± (0.6 + 0.01 t)

Nuevas clases de tolerancia para RDT según IEC 60751(2008)

a	Rango de temper	Valores de toleranciaº °C	
Clase de tolerancia	Resistencias de bobinado Resistencias de lámina		
AA	de -50 a +250	de 0 a +150	± (0.1 + 0.0017 t)
А	de -100 a +450	de -30 a +300	± (0.15 + 0.002 t)
В	de –196 a +600	de -50 a +500	± (0.3 + 0.005 t)
С	de -196 a +600	de - 50 a +600	± (0.6 + 0.01 t)

COMPARACIÓN DE TIPOS DE SENSORES

	TERMÓMETRO DE RESISTENCIA DE PLATINO	TERMOPAR	TERMISTOR
Sensor	Resistencias de bobinado de platino o de película plana	Elemento térmico, dos metales/aleaciones diferentes	Cerámico (óxidos metálicos)
Precisión (valores típicos)	de 0.1 a 1.0 °C	de 0.5 a 5.0 °C	de 0.1 a 1.5 °C
Estabilidad a largo plazo	Excelente	Variable, propensa al envejecimiento	Buena
Rango de temperatura	de -200 a 650 °C	de -200 a 1750 °C	de -100 a 300 °C
Respuesta térmica	Bobinado: lenta, película: más rápida 1-50 s típica- mente	Con funda: lenta, punta expuesta: rápida 0.1-10 s típicamente	generalmente rápida 0.05-2.5 s típicamente
Excitación	Requiere corriente constante	Ninguna	Ninguna
Característica	Resistencia PTC	Tensión térmica	Resistencia NTC (algunos son PTC)
Linealidad	Moderada	La mayoría de los tipos son no lineales	Exponencial
Efecto resistencia del cable	3 y 4 cables: baja. 2 cables: alta.	El cable corto funciona satisfactoriamente	Вајо
Captación eléctrica	Raramente susceptible	Susceptible	No susceptible
Interfaz	Puente 2, 3 o 4 cables	Entrada potenciométrica Unión fría se requiere compensación	Resistencia de 2 cables
Efectos vibracionales/shock	Bobinado: no adecuado. Película: buena	Tipos con aislamiento mineral adecuados	Adecuado
Salida/característica	aprox. 0.4 W/°C	De 10 µV/°C a 40 µV/°C dependiendo del tipo	- ५ %/°С
Cables de extensión	Cobre	Cable de compensación	Cobre
Coste	Bobinado: más caro, película: más barata	Coste relativamente bajo	De barato a moderado

Los comentarios y valores mostrados en esta tabla sirven como orientación general.

RTD

Las termorresistencias o RTD (del inglés Resistance Temperature Detector) son detectores de temperatura resistivos, el valor de resistencia cambia en función de la variación de la temperatura.

Las termorresistencias de platino son muy estables y permiten medir la temperatura con precisión.

Los RTD se pueden encontrar con circuitos de 2, 3 y 4 hilos en función de la aplicación, de la instrumentación asociada y de los requisitos de precisión.

Los RTD son, generalmente:

- · Más caros
- · Más precisos
- Muy estables (si se usan con precaución)
- · Capaces de mejor resolución

- · Restringidos en su rango de temperaturas
- · Vaina sin punta sensible
- Por su construcción, difícil encontrar RTD con diámetro inferior a 3mm.

Termopar

Los termopares consisten en dos hilos metálicos de diferentes materiales, unidos en un extremo. Esta unión constituye el punto de medición (junta caliente, hot junction). El otro extremo se llama junta fría (cold junction). El calentamiento de la junta de medición provoca una tensión eléctrica, aproximadamente proporcional a la temperatura (Efecto termoeléctrico, efecto Seebeck). Esta tensión (fuerza electromotriz F.E.M.) se debe a dos factores: la densidad de electrodos diferentes de los dos materiales y de la diferencia de temperatura entre punto caliente y punto frio.

Los diferentes tipos de termopares se definen por la naturaleza de las aleaciones utilizadas en los termoelementos y cada tipo muestra una fuerza electromotriz F.E.M diferente.

Los termopares son, generalmente:

- · Relativamente económicos
- Más robustos
- · Menos precisos
- · Más propensos a la deriva
- · Más sensibles

- Detectores en la punta
- Disponibles en diámetros más pequeños
- Rango de temperatura más amplio
- Más versátiles

En ambos casos, la elección de termopar o RTD debe realizarse para que coincida con la instrumentación y para que se adapte a la aplicación.

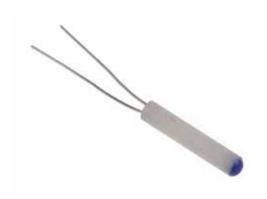
COMPARACIÓN DE LOS MATERIALES DE LA VAINA

MATERIAL DE LA VAINA	TEMPERATURA CONTINUA MÁXIMA	NOTAS	APLICACIONES
Óxido refractario recristalizado, p. ej., alúmina impenetrable	1750 °C	Buena elección para termopares de metales nobles. Buena resistencia al ataque químico. Buena resistencia mecánica, pero debe evitarse choques térmicos severos.	Forja de hierro y acero, incineradores, tratamiento térmico de endurecimiento, hornos continuos y Lehrs.
Carburo de silicio (poroso)	1500 °C	Buen nivel de protección incluso en condiciones severas. Buena resistencia hasta niveles moderados de choque térmico. Mecánicamente resistente cuando se especifican paredes gruesas pero se vuelve quebradizo con el paso del tiempo. Resistente a flujos pero inadecuado para ambientes oxidantes.	Forja de hierro y acero, incineradores, hornos de fosos y secadores cerámicos.
Mullita impermeable	1600 °C	Buena elección para termopares de metales nobles bajo condiciones severas. Resistente a ambientes sulfurosos o carbónicos. Buena resistencia a choques térmicos.	Forja de hierro y acero, incineradores, hornos continuos y tratamiento térmico.
Acero dulce (estirado en frío sin soldadura)	600 °C	Buena protección física pero baja resistencia a la corrosión.	Aplicaciones de recocido hasta 500°C, tratamiento térmico de endurecimiento (precalentadores) y hornos de cocción.
Acero inoxidable 25/20	1150 °C	Buena resistencia a la corrosión incluso a elevadas temperaturas Se puede usar en ambientes sulfurosos.	Tratamiento térmico de recocido, varios procesos químicos, esmaltado de porcelana.
Inconel 600/800*	1200 °C	Aleación de níquel-cromo-hierro que amplía las propiedades del acero inoxidable 25/20 a temperaturas operativas más altas. Máxima resistencia a la corrosión a temperaturas más altas y buena resistencia mecánica. Excelente en ambientes libres de azufre. Es importante evitar alcanzar temperaturas superiores a 800°C en ambientes sulfurosos.	Tratamiento térmico de recocido, de endurecimiento, hornos continuos, hornos de foso, chimeneas y hornos de salida de cemento, esmaltado de porcelana, supercalentadores de gas e incineradores de hasta 1000°C.
Cromo hierro	1100 °C	Adecuado para entornos muy adversos. Buena resistencia mecánica. Resistente a ambientes muy corrosivos y sulfurosos.	Tratamiento térmico de recocido, de endurecimiento, hornos continuos, hornos de foso, chimeneas y hornos de salida de cemento, esmaltado de porcelana, supercalentadores de gas e incineradores de hasta 1000°C.
Nicrobell*	1300 °C	Excelente estabilidad en aplicaciones de vacío. Resistencia a la corrosión y temperatura de trabajo elevada generalmente superiores a las de los aceros inoxidables. Se puede usar en ambientes sulfurosos a temperaturas reducidas.	Como el Inconel, además de ser una excelente opción para los hornos de vacío y los conductos de humo.

* Nombres comerciales

Los materiales de la vaina van desde aceros inoxidables y dulces hasta óxidos refractarios (llamados cerámicos) y una variedad de materiales compuestos de metales nobles. La elección de la vaina debe tener en cuenta la temperatura de trabajo, las características del medio, la durabilidad y otras consideraciones, incluyendo la relación del material con el tipo de sensor.

TERMORRESISTENCIAS DE PELICULA FINA Y BOBINADOS



RTD de película fina

RESISTENCIA	DIMENSIONES (ANCHURA X LONGITUD)	CLASE DE TOLERANCIA A	CLASE DE TOLERANCIA B	CLASE DE TOLERANCIA 1/3 DIN
Pt100	2 x 5 mm	611-7788	611-7801	-
Pt100	2 x 10 mm	362-9799	237-1607	362-9812
Pt100	2 x 2.3 mm	362-9834	362-9840	362-9856
Pt1000	2 x 10 mm	362-9907	362-9913	814-0178
Pt1000	1 x 3 mm	-	814-0171	-
Pt1000	1.25 x 1.7 mm	-	814-0175	-

RTD bobinados

 RESISTENCIA	DIMENSIONES (DIÁMETRO X LONGITUD)	CLASE DE TOLERANCIA A	CLASE DE TOLERANCIA B	ELEMENTO DOBLE (PT100 X2) CLASE DE TOLERANCIA A
Pt100	1.5 x 8 mm	611-7873	611-7851	-
Pt100	1.5 x 15 mm	611-7839	611-7867	397-1595
Pt100	2.8 x 15 mm	611-7845	611-7823	-
Pt100	2.8 x 25 mm	611-7817	611-7794	-

Pt100 y Pt1000 con cables extendidos

TIPO	CLASE	DETECTOR (AN X L)	LONGITUD DE CABLE	AWG	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
Pt100	В	2 x 10 mm	300 mm	24 AWG	Teflon® aislado	2 cables	891-9132
Pt100	Α	2 x 10 mm	1000 mm	26 AWG	Teflon® aislado	4 cables	891-9145
Pt1000	В	2 x 10 mm	500 mm	24 AWG	Teflon® aislado	2 cables	891-9157

Bobinado cerámico Pt100

TIPO	CLASE	DETECTOR (AN X L)	LONGITUD DE CABLE	AWG	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK	
Pt100	В	2.8 x 15 mm	300 mm	26 AWG	Teflon® aislado	2 cables	110-4460	
Pt100	В	2.8 x 15 mm	500 mm	26 AWG	Teflon® aislado	4 cables	891-9160	
Pt100	В	2.8 x 15 mm	1000 mm	26 AWG	Teflon® aislado	4 cables	891-9163	

Elementos de inserción cerámicos tubulares Pt100

TIPO	DIÁMETRO CERÁMICO	LONGITUD CERÁMICA	LONGITUD DE CABLE	TIPO DE CABLE	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
Pt100	5 mm	35 mm	50 mm	7/0.2 mm SPC teflón	Teflon® aislado	2 cables	237-1641
Pt100	5 mm	35 mm	450 mm	7/0.2 mm SPC teflón	Teflon® aislado	4 cables	237-1657
Pt100	5 mm	35 mm	10 mm	1/0.4 mm níquel	Teflon® aislado	4 cables	237-1629

Sonda Pt100 de altas prestaciones, clase B

TIPO	CLASE	DIÁMETRO DE SONDA	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	N.o DE STOCK
Pt100	В	6 mm	50 mm	2 m	Caucho de silicona flexible aislado, 7/0.2 mm	455-3968
Pt100	В	6 mm	100 mm	2 m	Caucho de silicona flexible aislado, 7/0.2 mm	611-8264

Sonda Pt100 de banda de pelicula fina

TIPO	CLASE	DIMENSIONES DE LA BANDA (L X AN X AL)	LONGITUD DE CABLE	TIPO DE CABLE	N.o DE STOCK
Pt100	В	35 mm x 6 mm x 2 mm	1 m	Cable trenzado gemelo aislado de Teflon® 7/0.2 mm	237-1613

Sonda PT100 de punta plana

TIPO	CLASE	DIÁMETRO DE SONDA	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	N.o DE STOCK	i
Pt100	В	4 mm	150 mm	1 m	Dos cables trenzados aislados de Teflon® 7/0.2 mm	237-1663	

Sonda de precisión Pt100

TIPO	CLASE	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	RANGO DE TEMPERATURAS DE LA SONDA	N.o DE STOCK
Pt100	1/5 Din	250 mm	2 m	PTFE 7/0.2 mm aislado con blindaje de cobre chapado en plata	4 cables	de -50 °C a +250 °C	236-4299

Sonda dúplex Pt100 con aislamiento mineral

TIPO	CLASE	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	RANGO DE TEMPERATURAS DE LA SONDA	N.o DE STOCK
PRT dúplex con aislamiento mineral	В	150 mm	1 m	7/0.2 mm flexible 6 núcleos Teflon® aislado y blindado	2 x 3 cables	de -50 °C a +500 °C	397-1416

Sonda dúplex Pt100 industrial

_	TIPO	CLASE	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	RANGO DE TEMPERATURAS DE LA SONDA	N.o DE STOCK	
	Pt100	В	150 mm	1 m	7/0.2 mm flexible 6 núcleos Teflon® aislado y blindado	2 x 3 cables	de -50 °C a +250 °C	397-1393	

Sondas Pt100 clase B en vaina de acero inoxidable con cable con aislamiento de teflón

CLASE	DIÁMETRO DE SONDA	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
В	3 mm	25 mm	1 m	Teflon® aislado	4 cables	762-1134
В	3 mm	100 mm	1 m	Teflon® aislado	4 cables	158-985
В	4 mm	90 mm	1 m	Teflon® aislado	4 cables	123-5610

Sondas Pt1000 clase B en vaina de acero inoxidable con cable con aislamiento de teflón

CLASE	DIÁMETRO DE SONDA	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
В	4 mm	40 mm	1 m	Teflon® aislado	2 cables	123-5612

Sonda Pt100 industrial de clase B en vaina de acero inoxidable

TIPO	CLASE	DIÁMETRO DE SONDA	LONGITUD DE SONDA	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
Pt100	В	3 mm	150 mm	1 m	Teflon® aislado, blindado	4 cables	362-9935
Pt100	В	4 mm	25 mm	2 m	Teflon® aislado, blindado	4 cables	123-5588
Pt100	В	4.5 mm	125 mm	2 m	Teflon® aislado, blindado	4 cables	123-5597
Pt100	В	6 mm	300 mm	2 m	Teflon® aislado, blindado	4 cables	123-5606

SONDAS PT100 Y PT1000 CON PARCHE DE SILICONA

Sonda Pt100 con parche de silicona

TIPO	CLASE	LONGITUD DE PARCHE	ANCHURA DE PARCHE	ALTURA DE PARCHE	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
Pt100	В	40 mm	13 mm	5 mm	2 m	Teflón aislado, 7/0.2 mm	4 cables	285-661
Pt100	В	40 mm	13 mm	5 mm	5 m	Teflón aislado, 7/0.2 mm	4 cables	762-1137

Sonda Pt1000 con parche de silicona

TIPO	CLASE	LONGITUD DE PARCHE	ANCHURA DE PARCHE	ALTURA DE PARCHE	LONGITUD DE CABLE	TIPO DE CABLE	TERMINACIÓN	N.o DE STOCK
Pt1000	В	30 mm	15 mm	4 mm	1 m	Teflón aislado, 7/0.2 mm	2 cables	762-1130

Sonda Pt100 con racor estilo RJT de 1.5"

TIPO DE SENSOR	DIÁMETRO DE FUNDA	LONGITUD DE FUNDA	DIÁMETRO DE SOPORTE	LONGITUD DE SOPORTE	CON TRANSMISOR EQUIPADO (CONFIGURACIÓN DE 3 CABLES)	SIN TRANSMISOR EQUIPADO (CONFIGURACIÓN DE 4 CABLES)
Pt100	6 mm	75 mm	8 mm	50 mm	872-2761	872-2764
Pt100	6 mm	125 mm	8 mm	50 mm	872-2770	872-2767

Sonda Pt100 con racor Tri-Clamp de 1.5"

TIPO DE SENSOR	DIÁMETRO DE FUNDA	LONGITUD DE FUNDA	DIÁMETRO DE SOPORTE	LONGITUD DE SOPORTE	EQUIPADO (CONFIGURACIÓN DE 3 CABLES)	SIN I RANSMISOR EQUIPADO (CONFIGURACIÓN DE 4 CABLES)
Pt100	6 mm	75 mm	8 mm	50 mm	-	872-2773
Pt100	5.7 mm	120 mm	8 mm	50 mm	896-8415	-

Sonda de temperatura Pt100 para interiores

_	CLASE	LONGITUD	ANCHURA	ALTURA	¿USO EN INTERIORES/ EXTERIORES?	N.o DE STOCK	
	В	85 mm	85 mm	30 mm	Solo interiores	338-9491	

Sondas de temperatura Pt100 para interiores y instalaciones frigoríficas

CLASE	LONGITUD ANCHURA		ALTURA	TIPO DE ELEMENTOS	CONEXIÓN PT100	SALIDA 4-20MA	¿USO EN INTERIORES/ EXTERIORES?	N.o DE STOCK
В	80 mm	74 mm	54 mm	Individual	4 cables No Uso en interiores o exteriores		236-4283	
В	80 mm	74 mm	54 mm	Dúplex	2 x 4 cables	No	Uso en interiores o exteriores	455-4208
В	80 mm	74 mm	54 mm	Individual	3 cables	Sí (2 cables)	Uso en interiores o exteriores	455-4214

Transmisor Pt100 con salida 4-20 mA y cable de 1 metro

CASQUILLOS Y PRENSAESTOPAS	OPAS CARLE CARLE TRA		¿CON TRANSMISOR EQUIPADO?	RANGO DEL TRANSMISOR	¿USO EN INTERIORES/ EXTERIORES?	N.o DE STOCK	
M16	1000 mm	PFA teflón	Sí	de -50 °C a +150 °C	Solo interiores	872-2758	
M16	1000 mm	F/G + SSOB	Sí	de 0 °C a 400 °C	Solo interiores	872-2751	

Sondas Pt100 con 4 cables de clase B con cabezal DIN B

TIPO DE SENSOR	DIÁMETRO DE SONDA	LONGITUD DE SONDA	TERMINACIÓN DE CABEZAL	N.o DE STOCK
Pt100	6 mm	100	Cabezal IP67 Din B	872-2736
Pt100	6 mm	200	Cabezal IP67 Din B	872-2733
Pt100	6 mm	500	Cabezal IP67 Din B	872-2749

Sondas Pt100 con 4 cables de clase B con cabezal KNS compacto

TIPO DE SENSOR	DIÁMETRO DE SONDA	LONGITUD DE SONDA	TERMINACIÓN DE CABEZAL	N.o DE STOCK
Pt100	6 mm	150	Cabezal IP67 KNS	872-2711
Pt100	6 mm	250	Cabezal IP67 KNS	872-2720
Pt100	6 mm	300	Cabezal IP67 KNS	872-2727

Sondas Pt100 con 3 cables de clase B con transmisor incluido en cabezal KNE

TIPO DE SENSOR	DIÁMETRO DE SONDA	LONGITUD DE SONDA	TERMINACIÓN DE CABEZAL	¿CON TRANSMISOR EQUIPADO?	RANGO DEL TRANSMISOR	N.o DE STOCK	
Pt100	6 mm	150	Cabezal IP67 KNE	Sí	de -50 °C a +150 °C	872-2708	
Pt100	6 mm	150	Cabezal IP67 KNE	Sí	de 0 °C a 100 °C	872-2701	
Pt100	6 mm	150	Cabezal IP67 KNE	Sí	de 0 °C a 200 °C	872-2705	
Pt100	6 mm	150	Cabezal IP67 KNE	Sí	de 0 °C a 400 °C	872-2714	

Sonda PT100 de 4 cables con conexión de proceso BSPP de 1/2"

_	TIPO	CLASE	DIÁMETRO DE SONDA	LONGITUD DE LA SONDA INFERIOR A ½" CONEXIÓN DE PROCESO BSPP	LONGITUD DEL AISLANTE	TERMINACIÓN	N.o DE STOCK
	Pt100	В	8 mm	250 mm	75 mm	Cabezal KNE	455-3980

Termómetro digital y registrador de datos L200

El termómetro L200 para Pt100 se puede utilizar junto con un PC para proporcionar una medición de temperatura precisa y versátil, escaneo y registro de valores medidos para hasta 8 PT100 de 3 hilos. También se puede utilizar como un indicador/registrador independiente e incorpora una pantalla digital donde se muestra la temperatura medida.

La autocalibración de los rangos Pt100 es sencilla y usa resistencias de precisión enchufables.

El L200 está diseñado para proporcionar una estabilidad excepcional con alta resolución de medición y representa un equipo ideal para realizar mediciones tanto en planta como en laboratorio a un precio muy competitivo. N.o DE STOCK

910-6826

Controlador de temperatura digital con alarma/registrador L300 para termopar o PT100

El controlador de temperatura L300 disponible en versión Termopar o Pt100 se puede conectar a un PC para proporcionar una supervisión precisa permitiendo configurar alarmas y controlar la activación/desactivación de elementos en hasta 8 zonas simultáneamente. También se puede utilizar como instrumento independiente sin necesidad de un PC.

El equipo dispone de una función de autocalibración que está incorporada en las dos versiones, lo que permite realizar de forma rápida y cómoda calibraciones in situ.

La serie L300 está diseñada para proporcionar una estabilidad excepcional con alta resolución de medición y representa un equipo ideal para realizar mediciones tanto en planta como en laboratorio.

El software suministrado con el controlador permite funciones de configuración, registro, medición, gráficos, alarmas, configuración de relés y calibración a través de un PC.

N.o DE STOCK

910-6829

La siguiente información sirve como orientación general, no pretende servir como base para la elección o instalación de productos.

P. ¿Con cuánta precisión puedo medir la temperatura usando un termopar o termorresistencia estándar?

R. Las tolerancias según especificadas en las normas internacionales son típicamente de ±2,5°C para los termopares populares y de ±0,5°C para las RTD. En caso de necesidad especial, los fabricantes pueden suministrar sensores de mayor precisión, del orden de ±0,5°C para termopar tipo T y de ±0,2°C para las RTD. Todos estos valores son aproximativos y dependen de la temperatura medida. La termorresistencia de 4 hilos es el elemento más preciso y con mayor estabilidad.

P. ¿Cómo escojo entre un termopar y una RTD?

R. Principalmente sobre la base de la precisión requerida, las dimensiones de la sonda, la velocidad de respuesta y la temperatura del proceso.

P. ¿Oué es una Pt100?

Pt100 es el tipo más común de RTD (detector de temperatura por resistencia). La caracterísca más importante de los elementos Pt100 es que están fabricados con platino con una resistencia eléctrica de 100 ohmios a una temperatura de 0 °C.

P. ¿Existen otros tipos de sensores de temperatura aparte de los tipos termopar y RTD?

R. Varios, pero estos dos grupos son los más comunes. Entre las alternativas se incluyen termistores, termómetros infrarrojos (sin contacto), termómetros convencionales (de tipo varilla y tipo dial) y muchos otros.

P. ¿Por qué ofrecer sondas RTD de 2, 3 o 4 hilos?

R. Porque se pueden encontrar las tres. Deben evitarse las de dos cables, las de tres cables son de uso común y las de cuatro cables proporcionan una mayor precisión. Su instrumento se configurará para 2, 3 o 4 hilos.

P. ¿Cómo saber si una sonda de inmersión RTD está lo suficiente inmersa?

R. En la práctica hay que mover hacia dentro o fuera del medio a medir de forma gradual hasta conseguir medir una temperatura sin variaciones.

P. ¿Cuál son las principales diferencias entre los RTD bobinados y los de película?

R. El tipo bobinado proporciona mayor precisión y estabilidad, pero es vulnerable a los impactos. Los RTD de película son resistente a los impactos y tienen una respuesta térmica más rápida.

P. ¿Es un sensor con certificado de calibración más preciso que uno sin calibrar?

R. La precisión de los sensores no depende de la calibración. Sin embargo, si dispone de un certificado de calibración podrá conocer la deriva del sensor en comparación con un sensor de referencia y, si es necesario, compensarla para obtener una mejor precisión de medición.

P. ¿Cuánto tiempo durará mi sensor en el proceso?

R. No se puede decir, pero en algunos casos se puede hacer una estimación basándose en el tipo de sensor, la construcción, el entorno y las condiciones de trabajo.

PREGUNTAS FRECUENTES

La siguiente información sirve como orientación general, no pretende servir como base para la elección o instalación de productos.

P. ¿Cuál es el termopar más largo que puedo tener sin perder precisión?

R. Intente mantener una resistencia máxima de bucle del sensor de $100~\Omega$ para los termopares y las RTD de 4 hilos. Al superar los $100~\Omega$, podría empezar a tener errores de medición. Si el equipo de instrumentación tiene una entrada de 4-20mA, puede ser interesante valorar el uso de un transmisor de 4-20mA cerca del sensor. El transmisor permite tener tramos de cable más largos y sólo necesita cables de cobre más económicos.

P. ¿Necesito una fuente de alimentación cuando utilizo un transmisor y qué longitud de cable de extensión puedo usar con un transmisor equipado?

R. Se necesitará una fuente de alimentación de 24 V CC y 20 mA si esta no está incorporada en el instrumento de medición. Se pueden usar tramos largos de cable de cobre.

P. ¿Qué pérdida de precisión obtendré al utilizar un transmisor en línea?

R. Depende de la precisión del transmisor, siempre habrá alguna desviación.

P. ¿Se puede usar una Pt100 de 3 hilos en un sistema previsto para una Pt100 de 4 hilos?

R. No, cada sistema lleva su propio sistema de compensación donde la longitud del cable y las variaciones de temperatura ambiente entran en juego.

CÓDIGO DE COLORES PARA EXTENSIÓN DE TERMOPARES Y CABLES/ALAMBRES DE COMPENSACIÓN

			ESTÁNDAR ANTERIOR]	
Tipo	CONDUCTORES +/-	BRITÁNICO BS1843:1952	ESTADOUNIDENSE ANSI/MC 96.1	ALEMÁN DIN 43713/43714	IEC 60584-3(2007) BS ENG60584-3(2008)	CÓDI- GO DE CABLE
EX	Níquel cromo/constantán (níquel, cromo/ cobre níquel, cromel/constantán, T1/ Advance, NiCr/constantán)	a programme of the contract of				EX
J	Hierro*/constantán (hierro/cobre níquel, Fe/const hierro/ Advance, Fe/constantán I/C)	angeling in the province				JX
K	Níquel cromo/níquel aluminio* (NC/NA, cromel/alumel, C/A, T1/T2, NiCr/ Ni, NiCr/NiAL)	a particular de la companya del companya del companya de la compan				кх
N	Nicrosil/nisil	espharineous est				NX NC
т	Cobre/constantán (cobre/cobre níquel, Cu/con, cobre/ Advance)	ang thay the desired of the second of the se				тх
Vx	Cobre/constantán (níquel bajo) (Cu/constantán) compensando por K (Cu/constantán)	prosition in the developer				КСВ
U	Cobre/cobre níquel compensando por platino 10 % o 13 % rodio/platino (códigos S y R respectivamente) cobre/cuproníquel Cu/CuNi, cobre/aleación n.o 11)	ana tra tra tra tra tra tra tra tra tra tr	gallagili di sina ang			RCA SCA

*Maanético

El color del conector del termopar es similar al color del aislamiento del cable.

Tipo	J	К	Т	E	N	R/S	В	Cu (cobre)
IEC				R	R	R	R	
ANSI		13	R		P	A	R	
JIS	R						R	

Todos los conectores usan aleaciones de termopar para lograr una precisión óptima, excepto los tipos R, S y B, que usan aleaciones compensadoras.