WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: WaveSolverTest, Maxwell's equations on a domain, pseudospectral method if periodic, non-periodic use Chebyshev polynomials, space by a pseudospectral method, pseudospectral method if non-periodic, domain such as the rectangle, domain such as the torus, finite differences for example, using <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> u </mtext> <mtext> t </mtext> <none/> </mmultiscripts> <mtext> ≈ </mtext> <mfrac> <mrow> <mmultiscripts> <mtext> u </mtext> <mtext> n+1 </mtext> <none/> </mmultiscripts> <mtext> - </mtext> <mmultiscripts> <mtext> u </mtext> <mtext> n-1 </mtext> <none/> </mmultiscripts> </mrow> <mtext> 2Δt </mtext> </mfrac> </mrow> </math>, time using finite differences, Chebyshev polynomials on the rectangle, periodic use Fourier basis, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> u </mtext> <mtext> t </mtext> <none/> </mmultiscripts> <mtext> ≈ </mtext> <mfrac> <mrow> <mmultiscripts> <mtext> u </mtext> <mtext> n+1 </mtext> <none/> </mmultiscripts> <mtext> - </mtext> <mmultiscripts> <mtext> u </mtext> <mtext> n-1 </mtext> <none/> </mmultiscripts> </mrow> <mtext> 2Δt </mtext> </mfrac> </mrow> </math> which has second order accuracy, Fourier basis on the torus, Maxwell's equations using a discretization, discretization in space, Algorithm to solve Maxwell's equations, discretization in time