
Kinodynamic Motion Planning

BRUCE DONALD AND PATRICK XAVIER

Cornell Um(ersity, [thaca, Ncw York

JOHN CANNY

Uni[ersi~ of Cahforrua at Berkelgv, Berkeley,

AND

JOHN REIF

Duke UniL1ersl@, Durham, North Carohna

Abstract. Kinodynamic planmng attempts to solve a robot motion problem subject to simultane-

ous kinematic and dynamics constraints. In the general problem, ggven a robot system, we must
find a minimal-time trajectory that goes from a start position and veloclty to a goal position and
velocity while avoiding obstacles by a safety margur and respecting constraints cm velocity
and acceleration. We consider the simplified case of a point mass under Newtoman mechanics.

together with velocity and acceleration bounds. The point must be flown from a start to a goal,
amidst polyhedral obstacles in 2D or 3D. Although exact sohztions to this problem are not known,

we provide the first provably good approximation algorlthm, and show that it runs in polynomial

time.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G. 1.2 [Numerical Analysis]: Approximation; G. 1.6

[Numerical Analysis]: Optimization; G.2.2 [Discrete Mathematics]: Graph Theory; 1.2.9 [Artifi-

cial Intelligence]: Robotics; 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Approximation, computational geometry, dynamics, optimal
control, robotics, shortest path

An earlier version of this work appeared as CANNY,J., DONALII, B., REIF, J., ANDXAVIER, P. On
the complexity of kinodynamic planning. In Proceedings of the 29tlz Symposzum on the Foandatio~zs

of Computer Sctencc (White Plains, N.Y.). IEEE, New York, 1988.

This paper describes research done in the Computer Science Robotics Laboratory at Cornell

University. Support for our robotics research M provided m part by the National Science
Foundation (NSE) under grants IRI 88-02390, IRI 90-00532 and Presidential Young Investigator
award IRI 89-57316, and in part by the Mathematical Sciences Institute.

Authors’ present addresses: B. Donald, Computer Science Department, Cornell University, 4130
Upson Hall, Ithaca, NY 14853-7501; P. Xavier, Sandla National Laboratories, Albuquerque, NM
87112: J. Canny, Computer Science Division, University of California, Berkeley. CA 94720;
J. Reif, Computer Science Department. Duke University, Durham, NC.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the tide
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and\or

specific permission.
01993 ACM 0004-5411 /93/1 100-1048$03.50”

Journal of the Aswclatmn for Computmg fvlachlnery. Vol 4[), No 5. Novemhtr 1YY3, pp 1048- 1[)66



Kinoa’ynamic Motion Planning 1049

1. Introduction

The kinodynamic plaruling problem is to synthesize a robot motion subject to

simultaneous kinematic constraints, such as avoiding obstacles, and dynamics

constraints, such as modulus bounds on velocity, acceleration, and force. A

kinodynamic solution is a mapping from time to generalized forces or accelera-

tions. The resulting motion is governed by a dynamics equation. In robotics, a

long-standing open problem is to synthesize time-optimal kinodynamic solu-

tions, by which we mean solutions that require minimal time and that respect

the kinodynamic constraints.

Although there has been a great deal of work on this problem in the robotics

community, there are no exact algorithms except for the one-dimensional

case. 1 Furthermore, it can be shown that in three dimensions, finding exact

solutions is NP-hard.z Therefore, it is reasonable to pursue approximation

algorithms—algorithms that compute kinodynamic solutions that are “close” to

optimal. However, among the many proposed approximate or heuristic tech-

niques, there exist no bounds on the goodness of the resulting solutions,

or on the time-complexity of the algorithms. We consider the restricted situa-

tion for particle dynamics, and provide a provably good approximation algorithm

for the 2- and 3-dimensional cases.

We incorporate safety into the meaning of “optimal” by including a speed-

dependent obstacle avoidance margin in the problem parameters. From this

viewpoint, it is intuitive that approximation algorithms for kinodynamic plan-

ning should trade off planning time (computational complexity) against opti-

mality in terms of (a) execution time of the motion, (b) strictness in observing

the safety margin, and (c) closeness to the desired start and goal positions and

velocities.

To analytically express this trade-off, we parametrize closeness to an

optimal safe solution by a tolerance ~, and we bound the planning algorithm’s

running time in terms of this ~. Roughly speaking, we show that if there exists

a “safe” optimal-time kinodynamic solution requiring time T,,Pt, then we can

find a “near-optimal” solution that requires time at most (1 + e )TOP,. Further-

more, the running time of our algorithm is polynomial both in the closeness of

the approximation l/~ and in the geometric complexity. These bounds on

solution accuracy and running time are the first that have been obtained for

2D and 3D optimal kinodynamic planning, which has been an open problem in

computational robotics for over ten years.

2. Kinodynamic Motion Plarming

2.1. THE KINODYNAMIC PLANNING PROBLEM. Kinematic corzstraints, such as

joint limits and obstacles, limit the configuration (position) of a robot. Dynam-

ics constraints govern the time-derivatives of configuration (independent of

obstacles). They include dynamics laws and bounds on velocity, acceleration,

and applied force. Strictly kinodynamic constraints are obstacle-dependent

constraints that govern configuration and its time-derivatives but do not fall

‘ However, see [5] for a recent exact algorithm for 2D. The algorithm runs in exponential time and
polynomial space.

~It was first observed in [4] that the methods of Canny and Reif [6] can be extended to
demonstrate NP-hardness. For more details of the proof, see [26].
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FIG. 1. A kinodynamic planning problem for a point robot, showing the obstacles, the start S, the

goal G, and three solutlons: time-optimal r, optimal (safe) I’,, and approximately optimal rq,
which happens to be exact at the start and goal.

into either of the previous categories. An example of such a constraint is a

speed-dependent obstacle-avoidance margin. A constraint is a kinodynamic

constraint if it belongs to one of the above categories. The state of a robot at a

given time is its configuration and velocity. The general kinodynarnic planning

problem is, for a given robot, to find a motion that goes from a start state to a

goal state while obeying kinodynamic constraints.

We consider the following restricted problem. (See Figure 1.) A point mass

in R~ (d = 2,3) must be moved from a state S = (s, S) to a goal state

G = (g, g). In the course of the motion, the point must avoid a set of polyhedral

obstacles. Movement is controlled by applying forces or commanding accelera-

tions, which are equivalent for a point mass. By using a configuration space

approach, this problem is readily extended to cover a rigid nonrotating robot

geometrically described by the union W of convex polyhedra.

We denote the configuration space R ~ by C, and its phase space by TC.

Phase space TC is the robot state space and is isomorphic to R ‘d. Thus, a point
in TC is a ( position. Leloci~) pair such as S or G.

A robot motion over a time interval [0, T~] can be specified by a twice-

differentiable map p: [0, Tf ] + C. This map is the path of the motion. In
kinodynamic planning, the motion must obey dynamics and dynamics con-

straints, and it is convenient to specify p explicitly. The trajectory of a robot

motion is the map 17: [0, T~] ~ TC given by Ilt) = (p(t), p(t)).We denote the

position and velocity components of a subscripted trajectory 17, by p, and p,,

respectively. Although a motion p can be given directly as a function of time,

two equivalent specifications are useful: (a) an initial position PO and a velocity

function v = p, and (b) an initial state (pO, VO) and an acceleration function
~z~.
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The motion must respect upper bounds on the magnitudes of the accelera-

tion and velocity. At all times t,the acceleration p(t) and the velocity p(t) must

obey

IIp(t)117.< L’max, (1)

Ilp(t)llx < a~~,. (2)

Equations (1) and (2) are the dyncmzics bounds. When the meaning is clear

from context, we will drop the max subscript.

We assume that the obstacles @ are represented by a set of convex, possibly

overlapping polyhedra. Suppose these convex polyhedra have a total of n faces

overall. We call n the combinatorial complexity of @. Note that n is also the

number of bounding halfplanes of the obstacles. Free space is the complement

of these obstacles. We assume that the set of free configurations is bounded by

a d-cube of side length 1. A general kinodynamic planning problem, then, is a

tuple (@, S, G, 1, a, ~).

An exact solution to the kinodynamic planning problem is a trajectory r such

that r(0) = S, I’( Tf ) = G, and r obeys the kinodynamic constraints. That is,

the path p avoids all obstacles, the velocity p respects (1), and p respects (2).

The time for a solution r is simply T~, The time-opti?nal kinodynamic planning

problem is to find a minimal-time kinodynamic solution, which is represented

as a suitable encoding of the start state r(0) and the acceleration function a.

A theoretically time-optimal solution may require unrealizable precision in

control or sensing and thus be unexecutable by a physical robot. For this

reason, an optimal solution should observe a safety margin; the margin we

define is speed dependent. Furthermore, the safety margin ensures the exis-

tence of a “tube” or family of solutions “nearby” in time and in phase-space

that “approximate” the optimal safe solution. The existence of such a “tube” of

approximating solutions is essential for our approach. Safety margins are both

practically motivated and mathematically necessary.

A 6,,-safe kinodynanlic solution avoids all obstacles by a safety margin S,,. In

this paper, we define this safety margin to be an affine function of the

trajectory speed. This first-order choice roughly corresponds to how accurately

and quickly a robot senses its position and velocity, combined with how quickly

it can correct for velocity errors. 3 Two positive scalars Ctl and c1 character-

ize the safety margin, which one can view as an obstacle-free tube centered

about the path. Formally, a ~,,-safe kinodynamic solution has the property that

for all times t in [0, T~], there exists a ball about p(t) in free space of radius

a,(c(,, c,)(p(t))= co + C,llp(t)ll.

We drop the parameters CO and c1 in the discussion when confusion will not

arise. Note that i5,,-safety is an example of a kinodynamic constraint that is

neither a pure kinematic constraint nor a pure dynamics constraint. A r?,,-safe

kinodynamicplanningproblem, then, is a tuple (@, S, G, a, v, 1, co, c1). We call a,

z], 1, C(), and c1 the kinodynarnic bounds.

3Consider a one-dimensional system. Recall that JE\d L = mL. Therefore, if the control system
allows a maximum velocity error of Au, and F,c: force is available for correcting velocity errors,

then IIZLAL/Fre, distance might be traveled erroneously before the velocity can be corrected.
Concisely stated, c, characterizes how accurately the robot can control its energy consumption.
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For fixed Co and c,, consider the class of all 8,-safe kinodynamic solutions.

We define an optimal S,,-safe kinodynamic solution to be a solution whose time

is minimal in this class. We henceforth employ the term optimal safe kino-

dynamic solution since d-safety is the only type we consider here.

We now specify what it means for a kinodynamic solution 17~ to be ~-

approximately optimal, where a positive e < 1 parameterizes the closeness of

the approximation. First of all, r~ must obey the safety margin

a;,(co,c, )(pq) = (1 – E)a,)(co, c,)(pq). (3)

Second, if an optimal safe trajectory takes time TOP,, then we require that the

time T~ for r,, obeys

7-q < (1 + E) ToPt.

Now, let us say that an approximating state (x’, x’ ) is “e-close” to a reference

state (x, x) if

11X- X’11= O(E), (4)

i

I+ E–x’
= o(e). (5)

For the final criterion, we require that r,,(0) and r~(T~ ) be c-close to the

desired start and goal states S and G, respectively.4

In order to obtain our result, we must assume four things: a velocity bound, a

diameter bound, L.-norm acceleration, and safety. Each of these assumptions

can be motivated in physical terms. For example, robots exist in the physical

world, and hence, of course, any actual robot will have bounded maximum

velocity and a bounded workspace. However, the proofs in this paper do not go

through if any of these assumptions is dropped. In [81, [9], [111, and [19], we

relax the L=-norm. Safety, as we shall see, proves to be a crucial assumption.

2.2. STATEMENT OF RESULTS. In 3.2, we describe a provably good approxi-

mation algorithm for the optimal safe kinodynamic planning problem. Concisely

stated, we show:

THEOREM 2.1. Let Z = (f@’,S, G, a, [, 1, cc,, cl) be arl optimal safe kino-

dynarnic platl?lit?gproble??l. Let O < e < 1. Let n be the combinatorial complexity

of the obstacles ~.

Suppose there is an optimal i3,,(c[), c ~)-safe trajectory that obeys the dynamics

bounds a and u and goes from S to G in time TOP,. Tilen the algorithm jinds a

8;,(c(J, c, )-safe trajectory that obeys the dynamics bounds, takes at most time
(1 + C) To(,,, and goes from some S* to some G* such that S* is ●-clo.ve to S and

G* is ●-close to G.

The running time of the algorithm is

[[ 11

IL’y 3 ‘1
oll —

E’ ‘

~Note that the definition of “e-close” is not symmetric because of the velocity condition in Eq. (5).
The condition 11x– x’ II = 0(•) may perhaps seem more intuitive. Although the results here
satisfy this definition, Eq. (5) allows simpler proofs and is necessa~ for natural extensions of our
work beyond the scope of this paper.
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d = 2,3, where

An optimal safe kinodynamic planning problem has two complexity compo-

nents. The combinatorial complexity is the number n of bounding half planes of

the obstacles @. The algebraic complexity of the kinodynamic bounds

(a, U, 1, CO,Cl) is the number of bits needed to encode them. Our algorithm is
an eapproximation scheme that is ji.dly polynomial in the combinatorial

complexity of the geometry and pseudo-polynomia15 in the algebraic complexity

of the kinodynamic bounds.

Note that we cannot claim that the approximately optimal safe solution

is necessarily near to a truly optimal safe solution in position. In this respect,

it is useful to compare our result to Papadimitriou’s fully polynomial approxi-

mation scheme for 3D Euclidean shortest path [17]. Specifically, neither

method necessarily finds a solution that is spatially close to the optimal path,

but merely one that has a length (time) that is not too much longer than the

optimal length (time). In fact, the results of Canny and Reif [6] imply that

finding a path that is position-space close to the shortest path, or even one

that is homotopic to the optimal, is NP-hard.

These above results can be extended to a rigid, nonrotating robot whose

geometry is given by a union f% of convex polyhedra. This configuration space

transformation has been discussed extensively in the literature (see, e.g., [15]).

The algorithm of [15] could be used as a preprocess to reduce the planning

problem for w amidst & to the point navigation problem we discuss. Since the

dynamics equations for such a robot are identical to those of a point robot,

we only need to map the problem to this configuration space and apply the

algorithm.

2.3. REVIEW OF PREVIOUS WORK. For a review of issues in robotics and

algorithmic motion planning, see [2] and [27]. There exists a large body of work

on optimal control in the control theory and robotics literature. For example,

see [1], [13], [21], [23], and [24]. Much of this work attempts an analytic

characterization of time-optimal solutions—for example, to prove that in

certain cases piecewise-extremal (“bang-bang”) controls, with a finite number

of stitchings, suffice. This has led to many interesting and deep subresults. For

example, Bobrow et al. [1] and Hollerbach [13] show how given a particular

trajectory r = (p, p), its velocity profile can be resealed so as to respect
dynamics constraints and to be time optimal. Using these ideas, a number

of authors have proposed heuristic or approximate algorithms for what is

hoped to be near time-optimal trajectory planning. In particular, Sahar and

Hollerbach [20] and Shiller and Dubowsky [22] both implemented algorithms

that employ a fixed-resolution configuration-space or phase-space grid to

compute, approximately, near minimal-t ime trajectories for robots with several
degrees of freedom (and full dynamics). They did not bound the goodness of

‘That is, the algorithm has a running time that is polynomial in the quantities a, L’, 1, c,,, and C,,
but it is not polynomial in the size (bit-complexity) of their encodings. See [18] for a discussion of
pseudopolynomiality.
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their approximation, nor the running time of their algorithm. However, their

grid methods take time, which grows exponentially with the number of grid

points or the resolution. We provide the first polynomial-time algorithm.

The polyhedral Euclidean shortest path problem can be viewed as a version

of optimal kinodynamic planning with the acceleration bound a set equal to

infinity. This observation may be used to extend the results of Canny and Reif

[6] to show that in 3D, optimal kinodynamic planning is NP-hard [10]. In other

work, O’Diinlaing [16] provides an exact algorithm for one-dimensional kino-

dynamic planning. These methods may extend to the 2- and 3D cases as

well. Kinodynamic planning in 2D is related to the problem of planning with

nonholonomic constraints, as studied by Fortune and Wilfong [12, 25]. In this

problem, a robot with wheels and a bounded minimum turning radius must be

moved. To make the analogy clear, in our case, the minimum turning radius

is ~llpll~. These algorithms might lead in time to an exact solution to

kinodynamic problems in 2D and 3D.

3. Algorithm and Analysis

3.1. THE GENERAL IDEA. Our approach transforms the problem of finding

an approximately minimal-time trajectory to finding the shortest path in

a directed graph. The vertices of the graph “discretize” the statespace TC,

and the edges of the graph correspond to trajectory segments that each take

time ~, a parameter computed by the algorithm.

Given the acceleration bound a, let M be the set of constant accelerations

whose components are members of { – a, O, a}. Let us choose a timestep ~ such

that velocity bound c is a multiple” of a~. Applying a member of .w” for

duration ~ is called an (a, ~)-bmzg. (See Figure 2.) We also use this term to

refer to the resulting trajectory segment: We say that there is an (a, T)-bung

from state X to state Y if following an (a, 7)-bang moves from X to Y.

Suppose S* = (s*, s*) G TC such that S* is a vector of multiples of a~.
Suppose that (p, p) is a state reachable from S“ by some sequence of (a, ~)-

bangs. Then for each coordinate i,

m,
p, = s: + —-aT2

2 (6)

p, =,i~ +n(ar,

for some integers m, and rzl. Thus, all states reachable from S“ under a

sequence of (a, ~)-bangs belong to a set of states that lie at the interstices of an

underlying, regular grid embedded in TC. This grid has spacings of ar ‘/2 in

position and a7/2 in velocity. We call this set of interstitial states the TC-grid,
and each of these states a TC gridpoint.7 We call a trajectory that results from

a sequence of (a, r )-bangs between TC-gridpoints an (a, r )-grid-batzg trajecto~.

6We use multiple to mean “integer multlple.”
7If the grid-spacing in veloclty N a7. then the closest velocity grid-coordinate is always at most

a7/2 away; this is what is needed for our proofs. The spacing along the veloclty axis N aT, At any
@ed grid-velocity (multiple of UT), the spacing along the position axis is a~’. However, the grid
positions for odd multiples of ar (velocity) tire offset by a7:/2 from the grid positions for
even multlples of ar. Hence, all the relevant states lie at the interstices of an wtder~vzg, regular
grid with spacings of a7z/2 m position and a7 in veloclty. Thus, the mappmg from states to the
interstices of the underlying grid is one-to-one, but not onto. The size of the underlying grid
prowdes a bound on the number of reachable states. See [26] for further discussion.
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(a) (b)

FIG. 2. Extremal accelerations (a) that generate (a, ~)-bangs (b).

Recall (3). We say that state (x,x) obeys 8~,-safety if the ball of radius ~~,(x)

about x lies in free space. If 7 is small enough, then a 8,,-safe trajecto~ will

imply the existence of a ~~,-safe (a., t-)-grid-bang trajectory that meets the other

approximation requirements. Since each (a, ~ )-bang takes time ~, finding a

minimal-time ~~,-safe (a, T-)-grid-bang trajectory between TC-gridpoints X and

Y is identical to finding the shortest path in a graph E( Z“”, %) embedded in

TC. The vertices z, = 7“ are the TC-gridpoints and the edges e, G % are

the t$[,-safe (a, ~)-bangs between pairs of these vertices. We say that ~, S*, the

kinodynamic parameters, and ● induce the graph 3’(77, %).

3.2. THE ALGORITHM. To explain the algorithm, we need two more defini-

tions. First, given two nonnegative scalars q, and T,,, we say that state X is

wit~lin (q., @ of state Y if 11x– yll < q, and 11x– yll s q,,. Second, consider
two trajectories r., r~: [0, T ] s TC’. Given two scalars q, and q,,, we say that

17c,approximately tracks r~ to tolerance (~,, q,,) in the Lx-norm if for all times t,

Ilpa(t) - ph(t)ll= < qx,

Ilpa(t) – pb(f)ll= < ‘q,,.

Given problem (c’@,S, G, a, L’, 1, c,, c ~) and approximation parameter e, our

algorithm does the following:

(1) It chooses a timestep I- as a function of a, u, e, CO, and cl. Specifically, the

algorithm chooses the largest ~ such that ~ s e u/a, a~ IL), and

(2) Next, the algorithm chooses the starting TC-gridpoint S* according to the
following: s* = s, and S* is the multiple of a~ closest to s/(1 + 6).
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(3) It then searches for the shortest path in the induced embedded graph
F( 7“, %), described above, from S* to any state (vertex) that is within

(m- ‘/2, aT/2) of (g, g/(1 + E)). The algorithm explores the graph using

breadth-first search, checking the 8~,-safety of each (a, t-)-grid-bang it

considers.

To show the correctness and complexity of the algorithm, we must show how

to choose ~ so that the following holds: For any 81,-safe trajectory from S to G

taking time T, there also exists a 8~,-safe (a, ~ )-grid-bang trajectory between

states e-close to S and G that takes time (1 + ~ )T.

We first observe that if trajectory 170P,obeys dynamics bounds a and L’, then

there is a time-resealed [13] trajectory I&t that takes time (1 + ●)TOPt and that

obeys dynamics bounds a/(1 + e )2 and u/(1 + c). We then choose qx and q,,

that guarantee that if 17~tracks I& to tolerance (q,, v,,), then it will be 8~,-safe.

We then show there is a ~ proportional to ●z such that there exists an

(a, ~)-grid-bang trajectory r, that (a) approximately tracks I& to this toler-

ance and (b) is within ( arz/2, a7/2) of l&t when t = O and when t = (1 +

~) TOPt. The latter implies E-closeness.

Finally, we show that ~,,-safety checking is O(rz) per (a, ~)-bang. Recalling

that TC-gridpoints have the form (6), we find that 12“ I is 0(1~1/a2~ 3)~. The

definition of (a, ~)-bang implies that the maximal out-degree in E is 3~. Thus,

we get the complexity bound in Theorem 2.1.

3.3. TIME RESCALING AND SAFE TRACKING. We say that a path p is tra-

uersed by a trajectory r if the image of the position component of r is equal to

the image of p.

LEMMA 3.1. If path p is traversed in time ~ by a trajectory r, under

acceleration bound a and llelocity bound v, then there exists some r; that traL)erses

p in time T,(I + e) while obeying acceleration bound a/(1 + E)2 and veloci~
bound LJ/(1 + E). In particular, this is true of 17~= (p;, p~), where

i)
p:.(t) = p, & >

(1
p,(t)= &p, + .

(7)

PROOF. Follows from the results of [13] or from direct computation using

(7). ❑

To prove the main theorem, we need to note that (7) preserves i$(,-safety:

Observation 3.2. Suppose r, is a t5,,(c0, c1)-safe trajectory from S to G that

takes time T, and obeys bounds L and a. Then r; as defined by (7) is

8,,(c0, c1)-safe, obeys bounds u/(1 + ~) and a/(1 + ~)2, and goes from

(“)St= S,& to
(“1

G’= g,+ .
l+E
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Intuitively, we expect that if a trajectory r~ tracks 17~as defined in (7) closely

enough, then 17,,will be (1 – ~) ~,,-safe. We have the following lemma, which is

independent of norm:

LEMMA 3.3 (THE SAFE TRACKING LEMMA). Let S,, be specified by C(I and c 1,

and let O < e < 1. Let the tracking tolerance (V,, q,, ) satisfi the condition

(8)

Suppose that r~ tracks r; to tolerance (qX, q,,). Then the i$~,-tube induced by r,{

lies within the 8{,-tube induced by r,.

PROOF. We find positive real numbers VX and q,, such that if r,l tracks r;

to tolerance ( Tx, ~,, ), then the ~~,-tube induced by rq lies entirely inside the

d,,-tube induced by r,.. Henceforth, let c~, = (1 – E)co and c~ = (1 – E)cl.

Suppose that x G C lies inside the b(,-tube induced by r,,. Then for some

t, e [0,(1 + E)Tr],

11X– Pq(tx)ll <4 + C; IIP(,OJII. (9)

Let Bn(x) denote the ball of radius q about x. If r,,(t) tracks r~(t) to

tolerance (qX, q,), then pq(tr)G Bqjpj(t,,))and ~,,(t,) G llq,(p~(t,)).Therefore

11X- p;(tr)ll <11X - pq(fl)ll + qx,

Iliw)ll ~llP:(t.)11 + q,>.
Since

by substituting into (9) and adding q, to the right-hand side,

– “’+~+c’[‘La ‘4 ’10)(i
t,

‘–p’ l+E

Now, suppose that ~ > 0 and that qX and ~[, satisfy the following condition:

c,, E

‘w ~
c,(l– E)+p’ (11)

‘m ~ k%.

Simple manipulation then shows that q, + (1 – ● )Clq,, s ●co. Thus,

(12)CL + qz + Cjq,l ~ co.

But then,

“+qx+c’(‘H ‘q’)‘cO+cl‘H ~ ’13)
XWe write two inequalities because q, and q,, have different dimensions (units).
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This implies that

(1
tx

()
t,<co + c, p, —

‘–p’ l+E l+e

via (10). Therefore, x lies inside the d,,-tube induced by r,.

Since x is an arbitrary point inside the tl~,-tube induced by r~, it follows that

the ti~,-tube induced by r,, lies entirely inside the S, -tube induced by r,.

Recall the hypotheses concerning Ct,, cl, and e. Choosing ~ = 1, we see that

condition (8) and the other hypotheses of the lemma together ensure that (11)

is satisfied. ❑

3.4. THE TRACKING LEMMA. The Tracking Lemma relates a timestep size ~

to a tracking tolerance. In particular, it tells how to choose ~ to ensure that in

the absence of obstacles, for every 17,,that obeys dynamics bounds a/(1 + ~)~

and ~1/( 1 + e), there will exist an (a, ~ )-grid-bang trajectory r~ that tracks 17L,

to tolerance (q,, q,,). We first need the following:

LEMMA 3.4. Let E >0, and let r,, be a t?ajectoty respecting dynamics bounds

a/(1 + E)z and ~’/(l + e). Let T s et’/a, and let a~l~].

Suppose that

Nk~. (14)
E

Tlzen f (Pq(l, Pqt) ) is a TC-gridpoint such that Ilpq{, – p,,(0)ll s ar’\2 and

\lp~[, – PL,(0)II 5 ar/2, there exists an (a, r)-grid-bang trajectory r, such that

r~(0) = (pclo, Pqo ) and that r,,( Nt-) is within (a~z\2, a~/2) of r,,( NT).

PROOF. Since we are using the Lx-norm, it is sufficient to consider the case

of a one-dimensional configuration space C. We show that the lower bound

on N given by (14) is sufficiently large to guarantee that if r,, meets the

hypotheses of the lemma then some (a, T )-grid-bang trajectory can meet

the endpoint conditions.

Let ~ >0, ~ < ● L]/a, and a~l L’. Let pU(0), @,,(O), and @,l(N~) be fixed, and

consider some 17,,that satisfies these endpoint conditions and the hypotheses of
the lemma. Let (p~(j, p~() ) be a TC-gridpoint within (a~~/2, a~/2) of 17U(0). To

find a sufficiently large N, we introduce variables b and @’. These variables

depend on r,,. Let b be an integer such that

l@q{)+ba~–P.(N~)l s ~.

Now, define @ to be the collection of all (a, ~ )-grid-bang trajectories of time

length NT starting at ( p~o, ~~0 ) with net velocity change bar. The positions
reached by the different trajectories in c?’ at time NT form a set of discrete

points spaced a~ apart. Call these positions the @’-positions. If the range of

E?’-positions spans the range of possible r[,( NT), then for some trajectory

r. = @, IPO(N7) – pu(N~)l s a~z/2.
‘We show how to choose N so that the maximum &-position exceeds the

maximum possible pU(N~ ). A similar argument shows that the same N guaran-

tees that the minimum &?-position is less than the minimum possible pu( NT).

For the remainder of this proof, we refer to the trajectories that achieve
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[ 1
I

>

0 t. t/
t

NT

FIG. 3. An example of ~, and ~q that achieve the maximum position subject to conditions at

times O and Nr. In this case, i., never reaches the maximum allowed vclocltv L,. N must be large.
enough so that the distance ~, ‘gains over r, during Ic and 1( makes up for the distance r<, loses

!lto r, during [0, t,]and [tl, NT

PL,(A2-) as 17q and 17,,,

either (a) full positive

one timestep, followed

the maximum @-position and the maximum possible

respectively.

The r~ that attains the maximum &-position obeys

acceleration, possibly followed by zero acceleration for

by full negative acceleration,y or (b) full positive acceleration until “its velocity

is z], followed by zero acceleration, followed by full negative acceleration.

Similarly, a r,, that maximizes p,,( NT) obeys either (c) full positive acceleration

followed by full negative acceleration, or (d) full positive acceleration until its

velocity is L~/(1 + ●), followed by zero acceleration, followed by full negative

acceleration.

Consider p~ and p,, and their role in determining p~(iV~) and pU(N~). In the

worst case, ~~0 = ~,,(0) – (a~/2) and ~~(ifh-) = @U(iV~) – (aT/2). If p~(lV~) is

to be greater than p,,( iV~), then we can divide the interval [0, M-] into three

intervals during which r~ “loses ground to” r,,, “gains on” rU, and “loses

ground to” 17,,. (See Figure 3.) In other words, there are times tc and tl,

O < tc< tl< M-, such that

@q(t) <p,,(t) if O<t<tC;

pq(t) > p,,(t) if tc<t<tl;

@q(t) <p,,(f) if tl<t<Nr.

Now, when r~ is accelerating full-positive,

“The zero acceleration timestep in the first case occurs if N – ((jJq(N7 ) – ~~O)/a~) is odd.
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Similarly, when 17,, is accelerating full-negative,

pc,~f) –p,{(t) < :.

Hence, when O L t < t,, pq(t) – p,,(t) ~ EL7/2, and when

p{,(t) < – “ (0) – (aT/2) andes/2. Then, because p~~) z p~l

(a7\2),

B. DONALD ET AL.

Therefore, it is sufficient to choose an N that guarantees

(15)

Consider the behavior of ~q(t) – ~,{(t) between times tc and tl.For now,

suppose that @~(t) < L’during this time. Then, for an interval of time IL

beginning with t,,both ~~(t) and @q(t)– @l,(t)increase: for an interval
11 beginning at most one timestep after 1[ and ending with t[,both @q(t)and

@q(t)– @i<(t) decrease. Furthermore,

p,,(t)–pU(t) > ;(t–tc) during 1<,

@q(t) –p,,(t)> ;(tl – t) during I,.

Using some manipulation, we then see that if ~~(t) < u for all t E [t,,tl],the

condition

2T
tl–t, >—+l (16)

E

guarantees that (15) is true.

Now, suppose p,,(t)= L for some interval 1., c [fC, tl]. (See Figure 4.) Then,

for an interval of time 1, immediately preceding 1,,, and beginning with t,, both

@q(t)and @q(t)– p,,(t)increase;for an interval L immediately after ~., and
ending with tl,both p,,(t) and b~( t) – @,i(t) decrease. However, during I,.,

@,/(t)– p,,(f)2 ~~, since ~ s ● L)\a. It follows that (16) again guarantees that

(15) is true.

We observe that

t,<:,
E

Nr–tl <~.
e

Recalling (16), we see that the following choice of N guarantees that the

range of ~-positions will be adequate:

11N=41 +1.
c

Using the fact that O < ~ <1, we obtain the sufficient condition (14). ❑
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I ! ,
>

0 t= t tl NT

F~G.4. An example of p, and p~ that achieve the maximum position subject to conditions at

times O and NT. In this case, p,, sustains the maximum allowed velocity L, for the interval 1,,,. N
must be large enough so that the distance r,, gains over ~r during 1,, I,., and 1, makes up for the

distance rq loses to 1’, during [0, t,]and [tl, NT]. Note that in this figure, the condition ~ s e L\u

is not met.

LEMMA 3.5 (THE TRACKING LEMMA). Let ~ >0. Let r,, be a trajecto~ that

respects dynamics bounds a/(1 + ~)z and L’/( 1 + e) and takes time T,,. Let q,

and q, be positiL’e. Let Ts ● u/a.
Suppose that

“fimin(GQ(:O:J “7)

and ar \v. Furthermore, let N be giuen by (14), and suppose that TU > Nr. Then in

the absence of obstacles there exists an (a, ~)-grid-bang trajecto~ r~ respecting

dynamics bounds 1 and a that approximately tracks 1’1,to tolerance (q,, v,,) during

[0, ~,] and obeys the following conditions:

Pq(o)

Ilpq(o)- Pu(o)tlx

= p.(o),
ar

<—,
2 (18)

< UT?,

< ar.

17) is correct. Let the hypotheses
IIPJZ) - l+$’mllti

PROOF. We show that the upper bound (

of the lemma be satisfied. Let N be given by (14). Then h follows from Lemma

3.4 that there is an (a, ~)-grid-bang trajectory I’~ such that for any positive

integer k satisfying kNr s T,,,

(19)

llpq(kNd -pJkNdllz = ;.

This can be shown by induction on k.
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Now, for all t,]Ip,,(t)– pq(f)ll~s 2a. By considering the

the worst case, where along some axis

B. DONALD ET AL.

relative velocity in

Ijq(kw -@LL(kNT)l= ;,

Ipq((k+ 1)N7) -pL,((k + l)NT)I = -q,

I@(,((k+ I) NT) -@t{((k + 1)N7)I = -;,

we conclude that for all t E [0, ~, ],

llPq(fJ - PL{WIIX < a(N‘y’ ~ (20)

To guarantee that the right-hand side of (20) is less than q,, it is sufficient

that

,<~(~). (21)

Since Ilpq(t)– p,,(t)ll.< LZ(N+ 1)7 when O s t < ~,,for the velocity case we

require that

(1‘1 1

Tmv+l”
(22)

If ~, > NT is not a multiple of NT, then for some natural numbers H < N

and k, (kN + n)~ is within r/2 of T,,. Substituting twice the value for N from

Lemma 3.4 and rounding to simplify yields the condition (17). ❑

3.5. SAFETY CHECKING. We describe how to check whether an (a, ~)-bang

violates the speed-dependent safety margin t3,,(co, c1), in O(n) time. We review

some basic computational geometry, describe the special case when c, = O,

and then extend the method to the general case.

As noted above, we assume that obstacles are the union of convex polyhedra.

For now, let the safety margin be a constant co >0, and define the B,,, to be

the Lw ball with radius co. Staying cf)-safe relative to a convex polyhedron A is

then equivalent to avoiding A– = A @ BC,,, where “@” denotes the Minkowski
sum. Since 13C(,is a d-cube, A– is also a convex polyhedron and has 0( Ifaces( A )1)

faces. By taking the Minkowski sum of each of the obstacles with B,,,, we

obtain the expanded obstacles.

Suppose A– has faces {FO,..., F~} lying on the boundary planes of the closed

half spaces {H.,. . . . H.,}. The boundary plane of each H, is the kernel of an

affine function ~[. If n, is a unit vector in the outward normal direction from

the boundary plane of H,, and y, is any point on this boundary then

t(x) = (nl, x) – (nl, y,). (Q3)

The polyhedron A– is thus described by a set of functions Y– = {~[,, . . . . ~~}.
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A point x is on the boundary of A– if and only if it lies on some closed face

FL of A: Equivalently, ~~(x) = O, and for all ~ that determine an edge of F~,

~(x) s O.Sincefor a convex polyhedron the numbers of edges and tkces are
linearly related and an edge is common to two faces, determining whether x

lies on the boundary of any of the expanded obstacles takes total time O(n).

Without loss of generality, suppose that (a, ~)-bang p begins at t = O and

that p(0) is co-safe. We then can check the co-safety of p(t) by determining

whether p(t) violates the bounda~ of an expanded obstacle. For a face F~ of

A; we only need to solve ~,,(p(t)) = O, and for each solution t, check whether

fi(p(t,,)) >0 for some ~, that determines an edge of F, with f~.
Now, consider the speed-dependent safety function 8,. For each time t,the

point p(t) should avoid the obstacles expanded by an L. ball with radius

a,(p(t)).
In other words, p(t) is ~,,-safe relative to a convex polyhedron A if and only

if it avoids the expanded obstacle A-(p(t))= A @ Ba (p(t)), where B8,(p(t)) is

the LX ball-with ~adius pl,(p(t )). A-(p(t )) is described similarly to A; by a set of

functions Y– = {f. ,... ,f,,l}. For each ~ G Y,

fi(p(t), p(t)) = (n,, p(t)) - (n[, yl + q,llp(t)llm), (24)

where q, is a constant ~ector that dep~nds-only on n,. To check whether p(t)

violates the faces of A, we use the f, G Y—the same way we use the fi E Y

above.

Since p(t) is quadratic, ~k(p(t ), j(t )) = O has solutions of the form t =

a + b. When computing the inequalities, we can square twice to eliminate

the radical, and thus it is adequate to compute square roots symbolically.

This implies that safety checking never requires numbers longer (in the

number of bits) than a constant-multiple of the length of the longest number

in the input. Therefore, we can still use the real-RAM computation model. By

the same argument as in checking whether a point is in on an expanded

obstacle boundary, we need to solve 0(n) equations and check 0(n) inequali-

ties, overall. Therefore, the cost of safety checking is 0( FZ)per (a, ~ )-bang.

3.6. PROVING THE MAIN THEOREM. We can now prove Theorem 2.1.

PROOF OF THEOREM 2.1. Let % = (@’, S, G, a, t,, 1, co, c1 ) be an instance of

the optimal safe kinodynamic planning problem. Let O < ~ < 1.

Suppose rOPt is a 8,,( co, c ~)-safe trajectory that obeys the dynamics bounds

a and L and goes from S to G in time T,,Pt. By Lemma 3.1 and Observation

3.2 that follows it, there is a trajectory r&, that is i3,,(co, c1 )-safe, obeys

bounds o/(1 + ~) and a/(1 + ●)z, takes time (1 + ●)TOP,, and goes from S’ =

(s, s/(1 + e)) to G’ = (g, g/(1 + ~)).
Now suppose we run the algorithm described in Section 3.2. The choice of -r

in the algorithm matches the conditions in Lemma 3.5 when the values of q,

and q,, from Eq. (8) in Lemma 3.3 are substituted into Eq. (17). Furthermore,

the algorithm’s choice of S“ obeys the condition on (p~o, p~() ) in Lemma 3.4.

Therefore, some (a, ~)-grid-bang trajectory r~ beginning at S* tracks l&

closely enough to be 8~,(co, c, )-safe, to obey the dynamics bounds a and L’, and
to take time T~ s (1 + e)TOPt to reach a state G* within tolerance (a~2/2, a~/2)

of G’.

Now, breadth-first search guarantees that a trajectory taking time no greater

than ~1 will be found. This is because the search returns the fastest grid-bang
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trajecto~, which may beat T~. Hence, T~ is an upper bound on the time. To see

this, suppose that there exists no other 8:,( Ctl, c, )-safe (a, ~ )-grid-bang trajec-

tory beginning at S* that obeys the dynamics bounds and comes adequately

close to G’ in less time than T~. Then the search algorithm will return r~. Thus,

the algorithm will find a trajectory meeting the conditions of the theorem.

To establish the time bound, we now bound the number G.(a, ~, t, 1, d) of

TC-gridpoints for a point robot with maximum (L=) speed u in a d-dimensional

free-space of diameter 1. Without loss of generality, choose s’ to be the “zero”

position. Recalling the canonical form of a TC-gridpoint from (6), we conclude

( i)d d
G=(a, r, L1,l, d) = O —a2T3 “

Since the number of (a, ~)-bangs from a state is constant (3~) and the cost of

checking the safety of a bang is 0(n), the total complexity of the algorithm can

be obtained by substituting in ~ from (17). Since .s < 1, we can use

<~min[~va(c~~l))>

instead of (17) to get the bound in the theorem.

4. Conclusio?ls

In this paper, we described the first polynomial-time, provably good approxima-

tion algorithm for kinodynamic planning. We feel that kinodynamic planning

represents a new direction in algorithmic motion planning, and expect to see

much progress in this area.

There are many directions for future research:

(1)

(2)

(3)

(4)

(5)

The complexity of our algorithm can probably be improved. For work in

this direction, see [7–1 1] and [26].

Other search algorithms, such as A*, may be employed in place of a

breadth-first search.

Precise lower bounds for kinodynamic planning should be established

(especially in the 2D case). For 3D lower bounds, see [26].

Exact algorithms should be explored. For work in this direction, see [5].

We conjecture that if contact is allowed (rather than ~,,-safety) then the

complexity of the problem increases considerably. More specifically, one

can imagine three related kinodynamic planning problems:

(a)

(b)

(c)

The first is explored in this paper, where the robot must avoid obstacles

by a speed-dependent safety margin.

A second problem might be likened to figure skating: forbidden regions

are marked out in the plane (the “ice”), and a path with velocity-
dependent nonholonomic constraints must be synthesized. The “obsta-

cles” may be grazed but not crossed. However, the forbidden regions

exert no reaction forces on the robot, even when in contact. This

second problem corresponds to theoretical “true” optimality.

One can also imagine a third problem in which the reaction forces

(impact, constraint forces, and friction) of the obstacle surfaces are

taken into account.



Kinodynamic Motion Planning 1065

Finally, one may consider the optimization version of each of these prob-

lems. Note that while the theoretical formulation of the “figure skating”

problem is quite clean, it may be rather far from practical interest.

From a combinatorial standpoint, we believe that in order to obtain

near- (e) optimality for the figure-skating problem, a grid such as ours

would have to have at least exponential size. In particular, we conjecture

that the grid spacing may be a superpolynomial function of the minimum

distance between obstacles.

(6) It would be interesting to extend our approach to 2-norm velocity and
acceleration bounds. For work in this direction, see [81, [9], [111, [19],

and [26].

(7) It would be of value to extend our approach to manipulator systems with
full rotational dynamics. For example, one might consider the rigid body

dynamics of open kinematic chains with revolute and prismatic joints.

Finding near-optimal kinodynamic solutions in these cases would be of

great interest. For work in this direction, see [8], [9], [11], [14], and [26].

In addition, there is a great deal of interesting experimental work to be done,

in reducing these algorithms to practice, and on developing search heuristics.

For work on implementation of our approach, and experiments, see [7], [1 O],

and [26]. Computational kinodynamics seems a particularly fruitful area in

which to pursue fast, provably good approximation algorithms, since while the

problems are of considerable intrinsic interest, exact solutions may well be

intractable. Finally, since the problem has an optimization flavor, the algo-

rithms and proof techniques draw on several branches of computer science and

robotics.
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