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1. Introduction

The kinodynamic planning problem is to synthesize a robot motion subject to
simultaneous kinematic constraints, such as avoiding obstacles, and dynamics
constraints, such as modulus bounds on velocity, acceleration, and force. A
kinodynamic solution is a mapping from time to generalized forces or accelera-
tions. The resulting motion is governed by a dynamics equation. In robotics, a
long-standing open problem is to synthesize time-optimal kinodynamic solu-
tions, by which we mean solutions that require minimal time and that respect
the kinodynamic constraints.

Although there has been a great deal of work on this problem in the robotics
community, there are no exact algorithms except for the one-dimensional
case.! Furthermore, it can be shown that in three dimensions, finding exact
solutions is NP-hard.” Therefore, it is reasonable to pursue approximation
algorithms—algorithms that compute kinodynamic solutions that are “close” to
optimal. However, among the many proposed approximate or heuristic tech-
niques, there exist no bounds on the goodness of the resulting solutions,
or on the time-complexity of the algorithms. We consider the restricted situa-
tion for particle dynamics, and provide a provably good approximation algorithm
for the 2- and 3-dimensional cases.

We incorporate safety into the meaning of “optimal” by including a speed-
dependent obstacle avoidance margin in the problem parameters. From this
viewpoint, it is intuitive that approximation algorithms for kinodynamic plan-
ning should trade off planning time (computational complexity) against opti-
mality in terms of: (a) execution time of the motion, (b) strictness in observing
the safety margin, and (c) closeness to the desired start and goal positions and
velocities.

To analytically express this trade-off, we parameterize closeness to an
optimal safe solution by a tolerance e, and we bound the planning algorithm’s
running time in terms of this €. Roughly speaking, we show that if there exists
a “safe” optimal-time kinodynamic solution requiring time 7, ,, then we can
find a “‘near-optimal” solution that requires time at most (1 + €)7,,. Further-
more, the running time of our algorithm is polynomial both in the closeness of
the approximation 1/e¢ and in the geometric complexity. These bounds on
solution accuracy and running time are the first that have been obtained for
2D and 3D optimal kinodynamic planning, which has been an open problem in
computational robotics for over ten years.

2. Kinodynamic Motion Planning

2.1. THE KINODYNAMIC PLANNING PROBLEM. Kinematic constraints, such as
joint limits and obstacles, limit the configuration (position) of a robot. Dynam-
ics constraints govern the time-derivatives of configuration (independent of
obstacles). They include dynamics laws and bounds on velocity, acceleration,
and applied force. Strictly kinodynamic constraints are obstacle-dependent
constraints that govern configuration and its time-derivatives but do not fall

"However, see [5] for a recent exact algorithm for 2D. The algorithm runs in exponential time and
polynomial space. ‘

It was first observed in [4] that the methods of Canny and Reif [6] can be extended to
demonstrate NP-hardness. For more details of the proof, see [26].
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FIG. 1. A kinodynamic planning problem for a point robot, showing the obstacles, the start S, the
goal G, and three solutions: time-optimal T, optimal (safe) T, and approximately optimal T,
which happens to be exact at the start and goal.

into either of the previous categories. An example of such a constraint is a
speed-dependent obstacle-avoidance margin. A constraint is a kinodynamic
constraint if it belongs to one of the above categories. The state of a robot at a
given time is its configuration and velocity. The general kinodynamic planning
problem is, for a given robot, to find a motion that goes from a start state to a
goal state while obeying kinodynamic constraints.

We consider the following restricted problem. (See Figure 1.) A point mass
in RY (d =2,3) must be moved from a state S =(s,§) to a goal state
G = (g, &). In the course of the motion, the point must avoid a set of polyhedral
obstacles. Movement is controlled by applying forces or commanding accelera-
tions, which are equivalent for a point mass. By using a configuration space
approach, this problem is readily extended to cover a rigid nonrotating robot
geometrically described by the union % of convex polyhedra.

We denote the configuration space R? by C, and its phase space by TC.
Phase space TC is the robot state space and is isomorphic to R*?. Thus, a point
in TC is a ( position, velocity) pair such as S or G.

A robot motion over a time interval [0,7;] can be specified by a twice-
differentiable map p: [0,7,] — C. This map is the path of the motion. In
kinodynamic planning, the motion must obey dynamics and dynamics con-
straints, and it is convenient to specify p explicitly. The trajectory of a robot
motion is the map I': [0, 7;] — TC given by T'(z) = (p(¢), p(1)). We denote the
position and velocity components of a subscripted trajectory I, by p, and p,,
respectively. Although a motion p can be given directly as a function of time,
two equivalent specifications are useful: (a) an initial position p, and a velocity
function v = p, and (b) an initial state (p,,v,) and an acceleration function
a=p.
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The motion must respect upper bounds on the magnitudes of the accelera-
tion and velocity. At all times ¢, the acceleration p(¢) and the velocity p(#) must
obey

IpHI, < v, . (1
Ipoll, <a,,,- (2)

A

Equations (1) and (2) are the dynamics bounds. When the meaning is clear
from context, we will drop the max subscript.

We assume that the obstacles ¢ are represented by a set of convex, possibly
overlapping polyhedra. Suppose these convex polyhedra have a total of n faces
overall. We call n the combinatorial complexity of #. Note that n is also the
number of bounding halfplanes of the obstacles. Free space is the complement
of these obstacles. We assume that the set of free configurations is bounded by
a d-cube of side length /. A general kinodynamic planning probleni, then, is a
tuple (2,8, G, [, a,v).

An exact solution to the kinodynamic planning problem is a trajectory I' such
that I'(0) = S, I'(T}) = G, and I" obeys the kinodynamic constraints. That is,
the path p avoids all obstacles, the velocity p respects (1), and p respects (2).
The time for a solution I' is simply 7. The time-optimal kinodynamic planning
problem is to find a minimal-time kinodynamic solution, which is represented
as a suitable encoding of the start state I'(0) and the acceleration function a.

A theoretically time-optimal solution may require unrealizable precision in
control or sensing and thus be unexecutable by a physical robot. For this
reason, an optimal solution should observe a safety margin; the margin we
define is speed dependent. Furthermore, the safety margin ensures the exis-
tence of a “tube” or family of solutions “nearby” in time and in phase-space
that “approximate” the optimal safe solution. The existence of such a “tube” of
approximating solutions is essential for our approach. Safety margins are both
practically motivated and mathematically necessary.

A 8 -safe kinodynamic solution avoids all obstacles by a safety margin §,. In
this paper, we define this safety margin to be an affine function of the
trajectory speed. This first-order choice roughly corresponds to how accurately
and quickly a robot senses its position and velocity, combined with how quickly
it can correct for velocity errors.® Two positive scalars ¢, and ¢, character-
ize the safety margin, which one can view as an obstacle-free tube centered
about the path. Formally, a §,-safe kinodynamic solution has the property that
for all times ¢ in [0, T}], there exists a ball about p(z) in free space of radius

8.(cy, e X p(t)) =cy + c,Ip()]l.

We drop the parameters ¢, and ¢, in the discussion when confusion will not
arise. Note that § -safety is an example of a kinodynamic constraint that is
neither a pure kinematic constraint nor a pure dynamics constraint. A §,-safe
kinodynamic planning problem, then, is a tuple (#, S, G, a, v, 1, ¢y, c|). We call a,
v, 1, ¢y, and ¢, the kinodynamic bounds.

*Consider a one-dimensional system. Recall that 7E/dv = mu. Therefore, if the control system
allows a maximum velocity error of Av, and F., force is available for correcting velocity errors,
then meAc/F,,, distance might be traveled erroneously before the velocity can be corrected.

Concisely stated, ¢, characterizes how accurately the robot can control its energy consumption.
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For fixed ¢, and ¢, consider the class of all § -safe kinodynamic solutions.
We define an optimal §,-safe kinodynamic solution to be a solution whose time
is minimal in this class. We henceforth employ the term optimal safe kino-
dynamic solution since § -safety is the only type we consider here.

We now specify what it means for a kinodynamic solution I, to be e

approximately optimal, where a positive e < 1 parameterizes the closeness of
the approximation. First of all, I, must obey the safety margin

§ilcq e (p,) = (1 — €)8,(co,c)(py)- (3)

Second, if an optimal safe trajectory takes time 7, ,, then we require that the
time T, for I', obeys
T, <1+ e)T,,.
Now, let us say that an approximating state (x’,x’) is “e-close” to a reference
state (x, x) if
IIx — x'll = OCe), (4)

= O(e). (5)

|-+
— = X
1+e

For the final criterion, we require that I'(0) and I'(7,) be eclose to the
desired start and goal states S and G, respectively.*

In order to obtain our result, we must assume four things: a velocity bound, a
diameter bound, L_-norm acceleration, and safety. Each of these assumptions
can be motivated in physical terms. For example, robots exist in the physical
world, and hence, of course, any actual robot will have bounded maximum
velocity and a bounded workspace. However, the proofs in this paper do not go
through if any of these assumptions is dropped. In [8], [9], [11], and [19], we
relax the L_-norm. Safety, as we shall see, proves to be a crucial assumption.

2.2. STATEMENT OF RESULTS. In 3.2, we describe a provably good approxi-
mation algorithm for the optimal safe kinodynamic planning problem. Concisely
stated, we show:

THEOREM 2.1. Let % =(#,S,G,a.0,1,¢,,¢,) be an optimal safe kino-
dynamic planning problem. Let 0 < € < 1. Let n be the combinatorial complexity
of the obstacles .

Suppose there is an optimal 8,(c, c\)-safe trajectory that obeys the dynamics
bounds a and v and goes from S to G in time T,,. Then the algorithm finds a
8/(¢cy, ¢ \)-safe trajectory that obeys the dynamics bounds, takes at most time
(1 + €)T,,,, and goes from some S to some G* such that S* is e-close to S and
G* is e-close to G.

The running time of the algorithm is

Oln

66

Ivy? ]d

*Note that the definition of “e-close” is not symmetric because of the velocity condition in Eq. (5).
The condition [x — x'|| = O(e) may perhaps seem more intuitive. Although the results here
satisfy this definition, Eq. (5) allows simpler proofs and is necessary for natural extensions of our
work beyond the scope of this paper.
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d = 2,3, where
alc; +1) Jjale, +1) a
Y = max y > T |-
Cy 2¢, v

An optimal safe kinodynamic planning problem has two complexity compo-
nents. The combinatorial complexity is the number n of bounding half planes of
the obstacles @. The algebraic complexity of the kinodynamic bounds
(a,v,1, ¢y, c;) is the number of bits needed to encode them. Our algorithm is
an e-approximation scheme that is fully polynomial in the combinatorial
complexity of the geometry and pseudo-polynomial® in the algebraic complexity
of the kinodynamic bounds.

Note that we cannot claim that the approximately optimal safe solution
is necessarily near to a truly optimal safe solution in position. In this respect,
it is useful to compare our result to Papadimitriou’s fully polynomial approxi-
mation scheme for 3D Euclidean shortest path [17]. Specifically, neither
method necessarily finds a solution that is spatially close to the optimal path,
but merely one that has a length (time) that is not too much longer than the
optimal length (time). In fact, the results of Canny and Reif [6] imply that
finding a path that is position-space close to the shortest path, or even one
that is homotopic to the optimal, is NP-hard.

These above results can be extended to a rigid, nonrotating robot whose
geometry is given by a union % of convex polyhedra. This configuration space
transformation has been discussed extensively in the literature (see, ¢.g., [15].
The algorithm of [15] could be used as a preprocess to reduce the planning
problem for # amidst & to the point navigation problem we discuss. Since the
dynamics equations for such a robot are identical to those of a point robot,
we only need to map the problem to this configuration space and apply the
algorithm.

2.3. REVIEW OF PrREvIOUs WORK. For a review of issues in robotics and
algorithmic motion planning, see [2] and [27]. There exists a large body of work
on optimal control in the control theory and robotics literature. For example,
see [1], [13], [21], [23], and [24]. Much of this work attempts an analytic
characterization of time-optimal solutions—for example, to prove that in
certain cases piecewise-extremal (“bang-bang”) controls, with a finite number
of switchings, suffice. This has led to many interesting and deep subresults. For
example, Bobrow et al. [1] and Hollerbach [13] show how given a particular
trajectory I' = (p, p), its velocity profile can be rescaled so as to respect
dynamics constraints and to be time optimal. Using these ideas, a number
of authors have proposed heuristic or approximate algorithms for what is
hoped to be near time-optimal trajectory planning. In particular, Sahar and
Hollerbach [20] and Shiller and Dubowsky [22] both implemented algorithms
that employ a fixed-resolution configuration-space or phase-space grid to
compute, approximately, near minimal-time trajectories for robots with several
degrees of freedom (and full dynamics). They did not bound the goodness of

>That is, the algorithm has a running time that is polynomial in the quantities a, v, [, ¢\, and ¢,
but it is not polynomial in the size (bit-complexity) of their encodings. See [18] for a discussion of
pseudopolynomiality.
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their approximation, nor the running time of their algorithm. However, their
grid methods take time, which grows exponentially with the number of grid
points or the resolution. We provide the first polynomial-time algorithm.

The polyhedral Euclidean shortest path problem can be viewed as a version
of optimal kinodynamic planning with the acceleration bound ¢ set equal to
infinity. This observation may be used to extend the results of Canny and Reif
[6] to show that in 3D, optimal kinodynamic planning is NP-hard [10]. In other
work, O Diunlaing [16] provides an exact algorithm for one-dimensional kino-
dynamic planning. These methods may extend to the 2- and 3D cases as
well. Kinodynamic planning in 2D is related to the problem of planning with
nonholonomic constraints, as studied by Fortune and Wilfong [12, 25]. In this
problem, a robot with wheels and a bounded minimum turning radius must be
moved. To make the analogy clear, in our case, the minimum turning radius
is HIpll*. These algorithms might lead in time to an exact solution to
kinodynamic problems in 2D and 3D.

3. Algorithm and Analvsis

3.1. THE GENERAL IDEA. Our approach transforms the problem of finding
an approximately minimal-time trajectory to finding the shortest path in
a directed graph. The vertices of the graph “discretize™ the statespace TC,
and the edges of the graph correspond to trajectory segments that each take
time 7, a parameter computed by the algorithm.

Given the acceleration bound a, let . be the set of constant accelerations
whose components are members of { —a, 0, a}. Let us choose a timestep 7 such
that velocity bound v is a multiple® of ar. Applying a member of .& for
duration 7 is called an (a, 7)-bang. (See Figure 2.) We also use this term to
refer to the resulting trajectory segment: We say that there is an (a. 7)-bang
from state X to state Y if following an (a, 7)-bang moves from X to Y.

Suppose S§* = (s*,§*) € TC such that §* is a vector of multiples of ar.
Suppose that (p, p) is a state reachable from S* by some sequence of (a., 7)-
bangs. Then for each coordinate i,

P, = s* + i?11117'2
! 1 2 (6)

S
p, =3 +tnar,

for some integers m, and n,. Thus, all states reachable from S* under a
sequence of (a, 7)-bangs belong to a set of states that lie at the interstices of an
underlying, regular grid embedded in 7C. This grid has spacings of ar?/2 in
position and a7/2 in velocity. We call this set of interstitial states the TC-grid,
and each of these states a TC gridpoint.” We call a trajectory that results from
a sequence of (a, 7)-bangs between TC-gridpoints an (a, 7)-grid-bang trajectory.

®We use multiple to mean “integer multiple.”

"1f the grid-spacing in veloc1ty 1s a7, then the closest velocity grid-coordinate is always at most
ar/2 away; this is what is needed for our proofs. The spacing along the velocity axis 1s ar. At any
fixed grid-velocity (multiple of a7), the spacing along the position axis is ar?. However, the grid
positions for odd multiples of a7 (velocity) are offset by ar>/2 from the grid positions for
even multlples of ar. Hence, all the relevant states lie at the mterstices of an underlying, regular
grid with spacings of ar~/2 m position and ar in velocity. Thus, the mapping from states to the
interstices of the underlymg grid is one-to-one, but not onto. The size of the underlying grid
provides a bound on the number of reachable states. See [26] for further discussion.
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Fic. 2. Extremal accelerations (a) that generate (a, 7)-bangs (b).

Recall (3). We say that state (x, %) obeys §/-safety if the ball of radius §/(X)
about x lies in free space. If 7 is small enough, then a § -safe trajectory will
imply the existence of a §-safe (a, 7)-grid-bang trajectory that meets the other
approximation requirements. Since each (a, 7)-bang takes time 7, finding a
minimal-time §/-safe (a, 7)-grid-bang trajectory between TC-gridpoints X and
Y is identical to finding the shortest path in a graph £(7", &) embedded in
TC. The vertices v, € 77 are the TC-gridpoints and the edges e, € & are
the §/-safe (a, 7)-bangs between pairs of these vertices. We say that 7, S*, the
kinodynamic parameters, and e induce the graph £(7, &).

3.2. THE ALGORITHM. To explain the algorithm, we need two more defini-
tions. First, given two nonnegative scalars n, and m,, we say that state X is
within (n,,n,) of state Y if |x — yll < n, and [k — y|| < 7,. Second, consider
two trajectories I',, I,: [0,T'] — TC. Given two scalars m, and 7,, we say that
I, approximately tracks T, to tolerance (n,, m,) in the L. -norm if for all times ¢,

Ip (t) = p(OI, < 7.,
Ip,(t) — p (O, <.

Given problem (#,S,G, a,v,1, ¢, c;) and approximation parameter €, our
algorithm does the following:

(1) It chooses a timestep T as a function of 4, v, €, ¢,, and c,. Specifically, the
algorithm chooses the largest 7 such that 7 < ev/a, at|v, and

€ 2c,€ Cy€
< — , .
B a(c; + 1) " alcy + 1)

(2) Next, the algorithm chooses the starting TC-gridpoint §* according to the
following: s* = s, and §* is the multiple of ar closest to § /(1 + €).




1056 B. DONALD ET AL.

(3) It then searches for the shortest path in the induced embedded graph
g(77, &), described above, from S* to any state (vertex) that is within
(at?/2,ar/2) of (g,g/(1 + €)). The algorithm explores the graph using
breadth-first search, checking the §/-safety of each (a,7)-grid-bang it
considers.

To show the correctness and complexity of the algorithm, we must show how
to choose 7 so that the following holds: For any §,-safe trajectory from S to G
taking time 7, there also exists a §,-safe (a, 7)-grid-bang trajectory between
states e-close to S and G that takes time (1 + €)7.

We first observe that if trajectory I, obeys dynamics bounds a and v, then
there is a time-rescaled [13] trajectory T, that takes time (1 + €)7, and that
obeys dynamics bounds a /(1 + €)? and v/(1 + €). We then choose 7, and 7,
that guarantee that if I, tracks I7; to tolerance (n,,7,), then it will be §/-safe.
We then show there is a 7 proportional to €® such that there exists an
(@, 7)-grid-bang trajectory T, that (a) approximately tracks I, to this toler-
ance and (b) is within (ar?/2,ar/2) of T’ . when ¢t =0 and when ¢ = (1 +
€)T,,,. The latter implies e-closeness.

Finally, we show that §,-safety checking is O(n) per (a, 7)-bang. Recalling
that TC-gridpoints have the form (6), we find that 77| is O(lv /a’r?)?. The
definition of (a, 7)-bang implies that the maximal out-degree in £ is 3%. Thus,
we get the complexity bound in Theorem 2.1.

pt

3.3. TIME RESCALING AND SAFE TRACKING. We say that a path p is ta-
versed by a trajectory I' if the image of the position component of I" is equal to
the image of p.

LemMmA 3.1. If path p is traversed in time T, by a trajectory I, under
acceleration bound a and velocity bound v, then there exists some U that traverses
p in time T.(1 + €) while obeying acceleration bound a /(1 + €)* and velocity
bound v /(1 + €). In particular, this is true of T = (p’,p.), where

t
p’,-(t)=pr( )
1+ € e
.y _ 1 . t
b (1) = 1+ ep’( 1+ e)'

Proor. Follows from the results of [13] or from direct computation using
(7). O

To prove the main theorem, we need to note that (7) preserves 9§, -safety:

Observation 3.2. Suppose I, is a §,(c,, ¢,)-safe trajectory from S to G that
takes time 7, and obeys bounds ¢ and a. Then I as defined by (7) is
8,(c,, c|)-safe, obeys bounds v /(1 + €) and a/(1 + €)?, and goes from

5 .
S = (s, —_— & .
1+ e 1+e€

to G = (g,
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Intuitively, we expect that if a trajectory I, tracks I} as defined in (7) closely
enough, then I, will be (1 — €)8,-safe. We have the following lemma, which is
independent of norm:

LEMMA 3.3 (THE SAFE TRACKING LEMMA).  Let 8, be specified by ¢, and c,,
and let 0 < e < 1. Let the tracking tolerance (n,, ) satisfy the condition®

CH€

M, <
(8)

N =

Suppose that T, tracks I} to tolerance (7,, n,). Then the §;-tube induced by T,
lies within the §,-tube induced by T’

ProoOF. We find positive real numbers 7, and %, such that if T tracks I”
to tolerance (1, n.). then the §/-tube induced by I, lies entirely inside the
d,-tube induced by T,. Henceforth, let ¢, = (1 — €)c, and ¢} = (1 — €)c,.

Suppose that x € C lies inside the §/-tube induced by I',. Then for some
t, €[0,(1 + e 1,

Hx — pq(tx)” < ¢y + ¢

p, ()] (9)

Let B,(x) denote the ball of radius n about x. If I'(r) tracks I7(r) to
tolerance (n,,7,), then p (¢,) € B, (p/(¢,)) and p (t,) € B, ((z,)). Therefore

Ix — p (el s\

x = p,(t)| + 7,

| <lp/ )l + m,.

pq(t.)c)

Since

1+e€ 1+e 1+ €
by substituting into (9) and adding 7, to the right-hand side,

t¥ . t-’(
X_p'(l—i—e) p"(l-i-e)

Now, suppose that 8 > 0 and that », and 7, satisfy the following condition:

t 1 t
P'r(fx)=P,(—““—) and I'J/,A(t_x)=—l'),( ' )

. (10}

< C() + nx + C’I

+ ",

Cy€
= cl —€e)+ B’ (11)
< PN,
Simple manipulation then shows that n, + (1 — €)¢ym, < ec,,. Thus,
o+, Feim, < ¢ (12)
But then,
t, t,
C§>+77x+6/1( P;(m)“ +m) < ¢yt P,(TJ;—;)H (13)

*We write two inequalities because n, and 7, have different dimensions (units).
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[x . [’C
X_p'(l—i-e p'(l+e)

via (10). Therefore, x lies inside the § -tube induced by I;.

Since x is an arbitrary point inside the §,-tube induced by I',, it follows that
the §/-tube induced by T, lies entirely inside the § -tube induced by L.
Recall the hypotheses concerning ¢, ¢;, and €. Choosing B = 1, we see that
condition (8) and the other hypotheses of the lemma together ensure that (11)

1s satisfied. O

This implies that

<cy ey

3.4. THE TRACKING LEMMA. The Tracking Lemma relates a timestep size 7
to a tracking tolerance. In particular, it tells how to choose 7 to ensure that in
the absence of obstacles, for every I, that obeys dynamics bounds a /(1 + ¢€)*
and v /(1 + €), there will exist an (a, 7)-grid-bang trajectory I, that tracks I,
to tolerance (7,, n,). We first need the following:

LEMMA 3.4. Let € > 0, and let T, be a trajectory respecting dynamics bounds
a/(1 + eV andv/(l + €). Let T < ev/a. and let at|v.
Suppose that

N > (14)

m | o

Then if (p,p.,) is a TC-gridpoint such that lp,, — p (Ol <ar*/2 and
p,0 — PO < ar/2, there exists an (a,7)-grid-bang trajectory T, such that
[,(0) = (p,¢.D,y) and that T (N7) is within (at*®/2,at/2) of T,(N7).

PrROOF. Since we are using the L, -norm, it is sufficient to consider the case
of a one-dimensional configuration space C. We show that the lower bound
on N given by (14) is sufficiently large to guarantee that if I, meets the
hypotheses of the lemma then some (a,7)-grid-bang trajectory can meet
the endpoint conditions.

Let € >0, 7 < ev/a, and atlv. Let p,(0), p (0), and p (N7) be fixed, and
consider some I, that satisfies these endpoint conditions and the hypotheses of
the lemma. Let (p,, p,) be a TC-gridpoint within (a7° /2. at/2) of T,(0). To
find a sufficiently large N, we introduce variables b and . These variables
depend on I,. Let b be an integer such that

| go + bat — p,(N7)| < %

Now, define @ to be the collection of all {«, 7)-grid-bang trajectories of time
length N7 starting at (p,g, p,o) with net velocity change bar. The positions
reached by the different trajectories in & at time N7 form a set of discrete
points spaced ar apart. Call these positions the @-positions. If the range of
@-positions spans the range of possible I' (N7), then for some trajectory
I, ee |p Nr)—pNDl<ar’/2

We show how to choose N so that the maximum &-position exceeds the
maximum possible p (N7). A similar argument shows that the same N guaran-
tees that the minimum &-position is less than the minimum possible p, (N7).
For the remainder of this proof, we refer to the trajectories that achieve
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FiG. 3. An example of p, and p, that achieve the maximum position subject to conditions at
times 0 and Nr. In this case. p, never reaches the maximum allowed velocity . N must be large
enough so that the distance I, gains over I, during I, and [, makes up for the distance T, loses
to T, during [0, ¢, ] and [¢,, N-rj.

the maximum @-position and the maximum possible p (N7) as I, and T,
respectively.

The T, that attains the maximum &-position obeys either (a) full positive
acceleration, possibly followed by zero acceleration for one timestep, followed
by full negative acceleration,’ or (b) full positive acceleration until its velocity
is v, followed by zero acceleration, followed by full negative acceleration.
Similarly, a T, that maximizes p,(N7) obeys either (c) full positive acceleration
followed by full negative acceleration, or (d) full positive acceleration until its
velocity is v /(1 + €), followed by zero acceleration, followed by full negative
acceleration.

Consider p, and p, and their role in determining p (N7) and p,(N7). In the
worst case, p,q = p,(0) — (ar/2) and p (N1) = p(N1) — (ar/2). If p,(N7)is
to be greater than p,(N7), then we can divide the interval [0, N7] into three
intervals during which I, “loses ground to” I, “gains on” I, and “loses
ground to” I’,. (See Figure 3.) In other words, there are times ¢, and ¢,
0 <1, <t; < Nr,such that

p() <pft) if 0<t<tg;
p) >p ) if 1 <t<i;
p,() <p,(t) if ¢, <t <Nr.

Now, when T, is accelerating full-positive,
1

(1+ ¢)

€a

>

p,() = p,(2) = a(l —

The zero acceleration timestep in the first case occurs if N — (( P(NT) — pag)/ar) is odd.
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Similarly, when I, is accelerating full-negative,

{ ae X Ea
P = b0 < =

Hence, when 0 < ¢ <1, p (1) — p(¢) > ea/2, and when 1, <1 < N7, ) —
p(1) < —ea/2. Then, because p,q = p,(0) — (ar/2) and p,(N7) = p,(N7) —
(ar/2),

t, . . aT
/0 (p.(0) = p,(D))dr < T

2

N7, | . ar
f (pu(t) = p,(1))dt < et

]

Therefore, it is sufficient to choose an N that guarantees

a
f[’(pq(t) — p(0))dt > o (15)

. 2e

14

Consider the behavior of p (1) — p, () between times £ and f,. For now,
suppose that p (1) < ¢ during this time. Then, for an interval of time 1,
beginning with ¢,. both p(#) and p,(¢) — p,(t) increase: for an interval
I, beginning at most one timestep after /, and ending with 7,, both p,(¢) and
p,(t) — p,(t) decrease. Furthermore,

ae
p,(t) — p(t) > 7(r —t,.) during 1.,

ae
p,) = p ) > = — 1) during 1.

Using some manipulation, we then see that if p (1) <v forall 1 € [z,,¢], the
condition

[Z—Z‘CZ?—f‘l (16)
guarantees that (15) is true.

Now, suppose p,(t) = v for some interval I, [z,.1,]. (See Figure 4.) Then,
for an interval of time I, immediately preceding /,, and beginning with 7 , both
p,(t) and p,(1) — p,(¢) increase; for an interval I, immediately after 7, and
ending with ¢, both p (1) and p, () — p,(¢) decrease. However, during I,
p) = plt) = a7, since 7 < ev/a. It follows that (16) again guarantees that
(15) is true.

We observe that

t, <

4

ml 9 miS

Nr—1 <

Recalling (16), we see that the following choice of N guarantees that the
range of @-positions will be adequate:

1

€

Using the fact that 0 < € < 1, we obtain the sufficient condition (14). O

N=4l—|+1.
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FiG. 4. An example of p, and p, that achieve the maximum position subject to conditions at
times 0 and Nr. In this case, p, sustains the maximum allowed velocity v for the interval I,. N

m-

must be large enough so that the distance I', gains over I, during 7, I,,, and I, makes up for the
distance I, loses to T, during [0, ] and [f;, N7]. Note that in this figure, the condition r < er/u
is not met.

LeEMMA 3.5 (THE TRACKING LEMMA). Let € > 0. Let T, be a trajectory that
respects dynamics bounds a /(1 + €)* and v /(1 + €) and takes time T,. Let 7,
and v, be positive. Let 7 < ev/a.

Suppose that
€ 2¢q€ Cg€
< —
=13 min alc, +1) "ale, + 1)

and arl|v. Furthermore, let N be given by (14), and suppose that T, > Nt. Then in
the absence of obstacles there exists an (a, 7)-grid-bang trajectory 1, respecting
dynamics bounds v and a that approximately tracks T, to tolerance (n,, ) during
[0, T,] and obeys the following conditions:

p,(0) = p,(0),

, (17)

ar
9,0 —p 0], < o .
“pq(Tu) - pu(Tu)”JC <ar-,

[p,(T) — pT)]|, <ar.

ProoF. We show that the upper bound (17) is correct. Let the hypotheses
of the lemma be satisfied. Let N be given by (14). Then it follows from Lemma
3.4 that there is an (a, 7)-grid-bang trajectory T, such that for any positive
integer k satistying kNt < T,

|p,(kNr) —p, (kNTY | < =
o (19)
2

[, CeNe) —p (NT) |, < =

This can be shown by induction on k.
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Now, for all ¢, llp,(¢) — p,(0)ll. < 2a. By considering the relative velocity in
the worst case, where along some axis

‘pq(kN'r) —p”(kNT)t = —,

i a
| p,(kNT) — p,(kNT)| = ER

ar?
‘pq((k + DN7) —p,((k + 1)N7')’ =T
ar
[ Bk + DNe) = p(Ck + DNm)| = ==,
we conclude that for all £+ € [0,7, ],
a(N + 1)°72
le]([) - pu([)Hx < T (20)

To guarantee that the right-hand side of (20) is less than =, it is sufficient

that
2, 1
<y . 21
7 a (N + 1) (2D

Since lIp, (1) — p ()|l <a(N + D7 when 0 < < T,
require that

for the velocity case we

u?

n( 1
TS-(N+1). (22)
a

If 7, > Nt is not a multiple of N7, then for some natural numbers n < N
and k, (kN + n)7 is within 7/2 of T,,. Substituting twice the value for N from
Lemma 3.4 and rounding to simplify yields the condition (17). O

3.5. SAFETY CHECKING. We describe how to check whether an (a, 7)-bang
violates the speed-dependent safety margin 8.(¢c,. ¢,), in O(n) time. We review
some basic computational geometry, describe the special case when c¢; = 0,
and then extend the method to the general case.

As noted above, we assume that obstacles are the union of convex polyhedra.
For now, let the safety margin be a constant ¢, > 0, and define the B, ., tobe
the L, ball with radius c¢,. Staying c-safe relative to a convex polyhedron A4 is
then equlvalent to avoiding 4 = A4 & B, , where “@" denotes the Minkowski
sum. Since B, is a d-cube, A is also a convex polyhedron and has O(| faces(A)l)
faces. By taklng the Minkowski sum of each of the obstacles with B,
obtain the expanded obstacles.

Suppose A has faces {F,,..., F,} lying on the boundary planes of the closed
half spaces {H,, ..., H,}. The boundary plane of each H, is the kernel of an
affine function f,. If n, is a unit vector in the outward normal direction from
the boundary plane of H,, and y, is any point on this boundary then

ﬁ(x) = (n,x) — (n,y,). (23)
The polyhedron A is thus described by a set of functions %= {f,,.... f,}
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A point x is on the boundary of A if and only if it lies on some closed face

F, of A. Equivalently, f,(x) = 0, and for all f, that determine an edge of F,
f,(x) < 0. Since for a convex polyhedron the numbers of edges and faces are
hnedrly related and an edge is common to two faces, determining whether x
lies on the boundary of any of the expanded obstacles takes total time O(n).

Without loss of generality, suppose that (a, 7)-bang p begins at ¢ = 0 and
that p(0) is c,-safe. We then can check the c¢,-safety of p(z) by determining
whether p(¢) violates the boundary of an expanded obstacle. For a face F, of
A, we only need to solve f,(p(¢)) = 0, and for each solution ¢, check whether
f,(p(£,)) > 0 for some f, that determines an edge of F, with f,.

Now, consider the speed-dependent safety function §,. For each time ¢, the
point p(#) should avoid the obstacles expanded by an L, ball with radius
8,.(p(1)).

In other words, p(¢) is 8,-safe relative to a convex polyhedron A if and only
if it avoids the expanded obstacle A(p(1) = A © B, (p(2)), where B, (p(1)) is
the L, ball with radius §.(p(¢)). A(p(1)) is descrlbed 51mllarly to A, by a set of
functions & = {f,,... fm} For each f €

fp(0), p(1)) = (n,,p(1)) - <n Yo+ g ol (24)

where ¢, is a constant vector that depends only on n,. To check whether p(t)
violates the faces of A. we use the f, € F the same way we use the f, €5
above. B

Since p(¢) is quadratic, f,(p(¢),p(#)) = 0 has solutions of the form ¢ =
a + Vb . When computing the inequalities, we can square twice to eliminate
the radical, and thus it is adequate to compute square roots symbolically.
This implies that safety checking never requires numbers longer (in the
number of bits) than a constant-multiple of the length of the longest number
in the input. Therefore, we can still use the real-RAM computation model. By
the same argument as in checking whether a point is in on an expanded
obstacle boundary, we need to solve O(n) equations and check O(n) inequali-
ties, overall. Therefore, the cost of safety checking is O(n) per (a, 7)-bang.

3.6. PROVING THE MAIN THEOREM. We can now prove Theorem 2.1.

PrROOF OF THEOREM 2.1. Let 7 =(#,8,G,a,v.l, ¢y, c;) be an instance of
the optimal safe kinodynamic planning problem. Let 0 < € < 1.

Suppose T, is a 8,(c,, ¢,)-safe trajectory that obeys the dynamics bounds
a and ¢ and goes from S to G in time 7 . By Lemma 3.1 and Observation
3.2 that follows it, there is a trajectory Iy, that is 8.(cy,c;)-safe, obeys
bounds v/(1 + €) and a /(1 + €), takes time (1 + €)T,,,, and goes from 8’ =
(s,$/(1 + €))to G =(g.g/(1 + €)).

Now suppose we run the algorithm described in Section 3.2. The choice of 7
in the algorithm matches the conditions in Lemma 3.5 when the values of 7,
and 7, from Eq. (8) in Lemma 3.3 are substituted into Eq. (17). Furthermore,
the algorithm’s choice of §* obeys the condition on (p 4, p,y) in Lemma 3.4.
Therefore, some (a, 7)-grid-bang trajectory I, beginning at S§* tracks I,
closely enough to be 8/(c,, ¢,)-safe, to obey the dynamics bounds « and ¢, and
to take time 7, < (1 + e)TOpt to reach a state G* within tolerance (a7?/2, at/2)
of G'.

Now, breadth-first search guarantees that a trajectory taking time no greater
than 7, will be found. This is because the search returns the fastest grid-bang
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trajectory, which may beat 7. Hence, 7, is an upper bound on the time. To see
this, suppose that there exists no other §/(c,, ¢,)-safe (a, 7)-grid-bang trajec-
tory beginning at S* that obeys the dynamics bounds and comes adequately
close to G’ in less time than 7. Then the search algorithm will return I',. Thus,
the algorithm will find a trajectory meeting the conditions of the theorem.

To establish the time bound, we now bound the number G(a, 7, v,[,d) of
T'C-gridpoints for a point robot with maximum (L,,) speed v in a d-dimensional
free-space of diameter /. Without loss of generality, choose s* to be the “zero”
position. Recalling the canonical form of a TC-gridpoint from (6), we conclude

vl ¢
Gx(a,'r,v,l,d)=0 (ﬁ) .
a T

Since the number of (a, 7)-bangs from a state is constant (3¢) and the cost of
checking the safety of a bang is O(n), the total complexity of the algorithm can
be obtained by substituting in 7 from (17). Since € < 1, we can use

et 2¢c, ¢y
< —m s
Tz ale, + 1) "ale, + 1)

instead of (17) to get the bound in the theorem.

b

4. Conclusions

In this paper, we described the first polynomial-time, provably good approxima-
tion algorithm for kinodynamic planning. We feel that kinodynamic planning
represents a new direction in algorithmic motion planning, and expect to see
much progress in this area.

There are many directions for future research:

(1) The complexity of our algorithm can probably be improved. For work in
this direction, see [7—11} and [26].

(2) Other search algorithms, such as A*, may be employed in place of a
breadth-first search.

(3) Precise lower bounds for kinodynamic planning should be established
(especially in the 2D case). For 3D lower bounds, see [26].

(4) Exact algorithms should be explored. For work in this direction, see [5].

(5) We conjecture that if contact is allowed (rather than 8 -safety) then the
complexity of the problem increases considerably. More specifically, one
can imagine three related kinodynamic planning problems:

(a) The first is explored in this paper, where the robot must avoid obstacles
by a speed-dependent safety margin.

(b) A second problem might be likened to figure skating: forbidden regions
are marked out in the plane (the “ice”), and a path with velocity-
dependent nonholonomic constraints must be synthesized. The “obsta-
cles” may be grazed but not crossed. However, the forbidden regions
exert no reaction forces on the robot, even when in contact. This
second problem corresponds to theoretical *“true” optimality.

(c) One can also imagine a third problem in which the reaction forces
(impact, constraint forces, and friction) of the obstacle surfaces are
taken into account.
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Finally, one may consider the optimization version of each of these prob-
lems. Note that while the theoretical formulation of the “figure skating”
problem is quite clean, it may be rather far from practical interest.

From a combinatorial standpoint, we believe that in order to obtain
near- (e-) optimality for the figure-skating problem, a grid such as ours
would have to have at least exponential size. In particular, we conjecture
that the grid spacing may be a superpolynomial function of the minimum
distance between obstacles.

(6) It would be interesting to extend our approach to 2-norm velocity and
acceleration bounds. For work in this direction, see [8], [9], [11], [19],
and [26].

(7) 1t would be of value to extend our approach to manipulator systems with
full rotational dynamics. For example, one might consider the rigid body
dynamics of open kinematic chains with revolute and prismatic joints.
Finding near-optimal kinodynamic solutions in these cases would be of
great interest. For work in this direction, see [8], [9], [11], [14], and [26].

In addition, there is a great deal of interesting experimental work to be done,
in reducing these algorithms to practice, and on developing search heuristics.
For work on implementation of our approach, and experiments, see [7], [10],
and [26]. Computational kinodynamics seems a particularly fruitful area in
which to pursue fast, provably good approximation algorithms, since while the
problems are of considerable intrinsic interest, exact solutions may well be
intractable. Finally, since the problem has an optimization flavor, the algo-
rithms and proof techniques draw on several branches of computer science and
robotics.
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