
An Exact Algorithm for Kinodynamic Planning in the Plane 

John Canny  * Ashutosh  Rege * 

Computer Science Division 
University of California, Berkeley 

John R e i f  t 

Computer Science Department 
Duke University, Durham, N.C. 

1 I n t r o d u c t i o n  

Consider the following problem : we are given an ob- 
ject in physical space, an initial point and a final point. 
We have to plan a mot ion for this object, through phys- 
ical space, avoiding obstacles present therein. Addi- 
tionally, the mot ion should respect certain other con- 
straints, such as given bounds on the velocity and ac- 
celeration. Depending on the constraints involved, w e  
can therefore define a broad class of problems. Kinody- 
namic planning deals with synthesizing robot motions 
subject to both  kinematic  constraints (such as avoiding 
obstacles) and dynamic  constraints (such as bounds on 
the acceleration and velocity). A long-standing open 
problem in robotics has been tha t  of devising algo- 
r i thms for generating time-optimal motions under kin- 
odynamic  constraints. This  problem has been consid- 
ered previously in the l i terature and approximat ion  al- 
gori thms have been provided for the two and three di- 
mensional cases [CDRX] but with the exception of the 
one-dimensional case, no exact a lgori thms have been 
given. In this paper,  we provide the first exact algo- 
r i thm for t ime-opt imal  kinodynamic mot ion planning 
in the two-dimensional case. 

2 T h e  P r o b l e m  S t a t e m e n t  

Consider two-dimensional physical space, i.e. ~2, with 
polygonal obstacles. A point mass  must  be moved from 
a specified s tar t  position and velocity S = (s, §) to an 
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end position and velocity F = (f,  i~) avoiding the ob- 
stacles. The  point  mass  is moved by the application 

• of command  accelerations (via command  forces). De- 
note the velocity and acceleration of the point mass 
over t ime t by v( t )  and a( t)  respectively. The  mot ion 
is subject to dynamic  constraints  in the form of upper 
bounds on the magni tude  of the Velocity and accelera- 
tion in some given norm. T h a t  is, 

II vCt)II _< and: .... II act)II _< (1) 

I n  this paper ,  we consider ' the ' -~' " Lo~ case, though we also 
provide part ial  results for a rb i t ra ry  norms. The L ~  
case models  Cartes ian robots  such as RobotWorld TM. 
Let us denote by C, the physical space in which the 
object moves. Let O C C be the obstacle space, i.e. 
the space occupied by the p01ygona! obstacles, and let 
F C C be the free space. We assume tha t  the obsta- 
cle space is specified as an ar rangement  of n vertices 
with rat ional  coordinates which are joined together by 
edges. Let CP denote phase space, which is isomorphic 
to ~4. A point Q in CP is a pair  (q, ~l), corresponding 
to position and velocity. Similarly, let OP denote the 
phase obstacle space corresponding to forbidden posi- 
tions and velocities, and F P  denote phase free space. 
In general, a k inodynamic  problem is given by a tuple 
(0 ,  area,, vma,,  S, F).  Let a :  [0, a] ~ ~ be some com- 
mand  acceleration where [0, a] is an interval in time. 
Denote by p : [0, a] -+ C, the path in physical space, 
and by r : [0, a] ~ CP, the trajectory in phase space, 
corresponding to this acceleration. Then, a solution to 
the problem (O, area, ,  Vma,, S, f )  is a comman d  accel- 
eration a : [0, a] ~ ~2 such tha t  (1) is satisfied and 
r ( [0 ,  a ] ) C  FP,  F(O) = S, F(a )  = F .  The  time of so- 
lution is a. And a time-optimal solution to the given 
problem is a solution such tha t  the t ime is minimized. 

3 Previous results  

The one-dimensional case is studied in [0]. The prob- 
lem solved there is planning the mot ion of a particle 
moving on the real line such tha t  given two "pursuit" 
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functions f(t)  and g(t), the position function, say x(t), 
satisfies f(t) < x(t) < g(t) for all t. In addition, the 
motion must obey a bound on the acceleration. A poly- 
nomial t ime exact algori thm is provided for this prob- 
lem. In the three-dimensional case, finding an exact 
solution is known to be NP-hard. Not much is known 
about  lower bounds for finding an exact solution in the 
2D case. 

There is an extensive l i terature on t ime-optimal tra- 
jectory planning subject to different constraints. One 
focus has been to determine the t ime-optimal  control 
for a manipulator  moving along a given path [BDG, 
SM]. Other work a t tempts  to characterize the time- 
optimal solutions analytically [Hol, Sch]. Sahar and 
Hollerbach [SH] and Shiller and Dubowsky [SD] pro- 
vide approximation algorithms for robots with sev- 
eral degrees of freedom and full dynamics. These ap- 
proaches use grid methods to compute  solutions which 
take t ime that  is approximately that  taken by an ex- 
act t ime-optimal  solution. However, these algorithms 
run in t ime exponential in the number of grid points. 
The first polynomial-t ime approximation algorithm for 
the two and three dimensional cases was provided in 
[CDRX]. More specifically, they provide an algori thm 
which finds a "safe" t ra jectory which runs in t ime ( l+c)  
times the t ime for an optimal  trajectory. The trajec- 
tory is safe in the sense that  there exists a "tube" of 
a certain size (the radius being a function of the par- 
ticle velocity) around the t ra jectory which does not 
pass through through obstacle space. The algori thm 
runs in t ime which is polynomial  in e -1 and in n, the 
complexity of the input. Jacobs et al. [JHCP] give 
an algori thm for generating near t ime-optimal trajec- 
tories for an open-kinematic-chain manipulator  with 
guaranteed bounds on the closeness of the approxima- 
tion. Related problems include determining the short- 
est bounded curvature path in the presence of obstacles 
(without  any dynamic constraints). Fortune and Wil- 
fong [FW] address this problem in the two-dimensional 
case. They  provide an exact algori thm which solves 
the teachability problem, i.e. it determines if there ex- 
ists a path between two points which obeys the given 
constraints but  it does not generate the path. Their  
algori thm runs in t ime and space exponential in the 
complexity of the polygonal arrangement.  An approx- 
imation algori thm for generating a bounded-curvature 
path is provided in [JC]. 

4 S t a t e m e n t  o f  R e s u l t s  a n d  O v e r v i e w  

o f  A p p r o a c h  

In this paper, we give the first algori thm to generate 
an exact t ime-optimal solution to the two dimensional 
problem (O, a,~a~, Vma~, S, F)  where S = (s, §) = (s, 0) 
and F = (f, f) = (f, 0) (i.e. the object starts and ends 

at rest). The velocity and acceleration are assumed to 
be bounded in the L ~  norm. We also provide partial 
results for arbi t rary norms, in particular the L2 norm. 
The algorithm requires space which is polynomial in 
the input (i.e. PSPACE) and runs in exponential time. 

We can summarize our approach as follows : 

• We first define and characterize, in the case of the 
Loo norm, a certain class of solutions which we 
call the canonical solutions, which satisfy certain 
homotopy properties. 

• Then, we prove a tracking lemma which provides 
bounds on the t ime difference between a given 
trajectory and (a slower) one which tracks it. 
This lemma is applicable to arbi t rary norms and 
is of independent interest. 

• We then prove the Loop Elimination theorem 
which shows that  any solution which generates 
a self-intersecting path can be replaced by one 
which does not give rise to a self-intersecting 
path. This theorem too applies to arbi t rary 
norms. 

• Next, we show that  there exists a canonical so- 
lution which gives rise to a non-self-intersecting 
path and which is t ime-optimal.  

• Finally, we show how to use the theory of the 
reals (with a bounded number of quantifier al- 
ternations) to obtain the canonical solution and 
hence the associated trajectory. 

5 T h e  c a n o n i c a l  s o l u t i o n s  

Consider first the one-dimensional problem : If we do 
not have a bound on the velocity, it can be easily seen 
that  the fastest way to get from a point, s with veloc- 
ity h to another point f with velocity f is to apply a 
"bang-bang" command acceleration as shown in Fig. 1. 
Consider now the motion of the given object in two di- 
mensional physical space without  the presence of obsta- 
cles. Suppose the particle is to be moved from a point 
S = (s, §) to F = (f, b .  Since the velocity and acceler- 
ation are bounded in the Lo~ norm, the bounds in the 
z and y directions are decoupled. We could then treat 
the two-dimensional problem as two one-dimensional 
problems and apply bang-bang accelerations in both 
directions. However, in general, the t ime-optimal mo- 
tion in one of the directions will take more time than 
the other. We will refer to that  direction as the satu- 
rated direction. Assume that  the saturated direction is 
the z direction. Then, as shown in Fig. 2, we can ap- 
ply a bang-bang acceleration in the x direction. Since 
the t ime-optimal motion in the y direction takes time 
at most equal to that  in the x direction, it follows that  
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we can arrange the velocity profile in the y direction in 
a triple-bang fashion as shown in Fig. 2 such that  the 
area under the velocity curve is exactly the distance to 
be traversed in the y direction. Since there is only one 
position of the middle segment of the velocity profile 
in the y direction which corresponds to the right y dis- 
tance, the motion thus obtained is uniquely specified. 
Let the velocity profiles in the x and y directions have 
the general shape shown in Fig. 2. Let s = (s~,s~), 

= (s~, ~v), f = (f~, fy) and f = (j~, ]v)" For t ime 
t < tl,  the equations for the path described in the x 
and y directions are given by : 

1 
x = s~ + ~ t  + ~arna~t 2 (2) 

Z 

and 
1 

y = % + hvt + ~ama~t 2 (3) 

We can write similar expressions for the intervals [tl, t2] 
and It2, t3]. If we let s! - s~ = Ax > 0, we get 

t l  - -  8 x  + 1 182x + ]x 2 ~" amaxAX (4) 
arnax arnax 2 

We can obtain similar expressions for t2 and t3. Thus, 
given the initial and final positions and velocities of a 
canonical segment we can write parametrized expres- 
sions (with the positions and velocities as indetermi- 
hates) describing the parabolic pieces which comprise 
the path. The parameter  we use is t ime t. In section 8 
we will show how we can use such expressions to write 
predicates which enable us to generate the optimal tra- 
jectory. The above analysis holds for the type of veloc- 
ity profiles shown in Fig. 2. We can get different types 
of velocity profiles depending on the relative values of 
the velocities as shown in Fig. 3. For each case we can 
obtain the extremal t ime instances as above thereby 
giving us similar expressions which describe the corre- 
sponding path. The previous discussion assumed that  
there was no bound on the velocity of the particle. If 
we have a bound on the velocity then the motion of the 
particle would, in general, appear as shown in Fig. 4. 
We can then determine the extremal t ime instances in 
the same manner  as before and obtain expressions for 
the path. 

Now consider the motion of the object through 
physical space with obstacles. As the object moves 
from $ to F, the path might touch vertices or edges 
of the obstacle space. We will call such points on the 
path (or on the trajectory) contact points and will re- 
fer to the portion of a path (or trajectory) between two 
consecutive contact points as a segment of the path (or 
trajectory). For the sake of completeness we will also 
include the start  and finish points of the trajectory as 
contact points. Consider a segment of a path where the 
command acceleration in both the x and y directions 

is bang-bang and the motion is saturated in at least 
one direction. If the velocity profile is such that  it is 
saturated in at  least one direction and is arranged in 
the unsaturated direction as shown in Fig. 2, then we 
will call the segment a canonical segment. Finally, we 
have, 

D e f i n i t i o n  1 Let a : [0, b] ~ ~2 be a solution to 
(i.e. the command acceleration for) a given problem 
(O, amax, vma~, S, F) .  We say that this solution is 
canonical i f  it is made up of a finite number of canon- 
ical segments. 

Thus, equivalently a solution is canonical if it is made 
up of a finite number of constant saturated acceleration 
steps. 

N o t e  : The  canonical solutions have an important  
property which we will need in Section 7 to prove the 
existence of t ime-optimal canonical solutions : Both 
the position and the velocity are continuous functions 
of the end-point position and velocity, i.e. if we vary 
the endpoint position and velocity continuously, we will 
obtain a continuous deformation of the trajectory we 
started out with. In other words, we obtain trajecto- 
ries which are homotopic to the original one. This fol- 
lows from the fact tha t  t l ,  t2 and t3 as  obtained above 
are continuous functions of the end-point constraints. 
Therefore so are x, y and the velocities in the two direc- 
tions. This is true even when the saturated direction 
changes since it does so in a continuous manner. 

6 T h e  l o o p  e l i m i n a t i o n  t h e o r e m  

In this section, we show that  any solution path which 
contains a loop, or more generally, intersects itself, can 
be replaced by one which does not intersect itself and 
which takes t ime which is less than or equal to that  
taken b y  the original trajectory. This enables us to 
restrict at tention to loop-free paths in our search for 
an optimal t ra jectory using the theory of the reals. 
In order to prove this theorem, we prove a tracking 
lemma. The essence of this lemma is as follows : given 
any trajectory in free space, we show that  there exists 
another t rajectory start ing at  rest, which follows the 
same path in physical space, such that  the time differ- 
ence between the two trajectories at any given point 
on the path is bounded from above. This is done by 
establishing an invariant relating the two trajectories 
which holds at all points along the path. We prove 
this lemma for any norm and in particular for the Lo~ 
and L2 norms. Though we use this lemma to prove the 
loop elimination theorem, it is of independent interest 
since it provides a simple and elegant characterization 
of the relationship between the original trajectory and 
the tracking trajectory. 

N o t a t i o n  : Let a : [0, b] ~ ~2 be a solution to some 
given problem. Denote by 9(s) the arc-parametrized 
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velocity of the t rajectory corresponding to this solu- 
tion, where s denotes arc distance traversed along the 
path. Let ~t(s) denote the arc-parametrized accelera- 
tion and ~(s) the arc-parametrized path. Let t(s) be 
the t ime taken by the solution to traverse a distance of 
s along the path. Let [1" [I denote any norm. 

L e m m a  1 (Tracking Lemma) Consider a command 
acceleration a 1 : [0, bl] ~ ~2 Then there exists a com- 
mand acceleration a 2 such that 

1. v2(0 ) = 0 (the second trajectory starts at rest) 

e. ~(~) is non-increasing, where O(s) = II A~(~)II + 
At(s)amaa:, AS(s)  = ~ l (S)  - ~2(s)  and At(s)  = 
t~(~) - t~(~). 

s. f ,~(s )  = f ,2(~) (i.e. the paths described b~ the 
two trajectories are the same). 

P r o o f :  We want to find a command  acceleration which 
will satisfy conditions 1 to 3 in the s ta tement  of the 
lemma. Our strategy will be simple : we will follow 
the original pa th  and at every point on the path we 
will apply the maximum possible acceleration in the 
tangential direction till we (possibly) encounter a point 
where the velocity in the second case equals tha t  in the 
first case. From this point on, we will apply the same 
acceleration as tha t  in the original trajectory. Consider 
Fig. 5 representing the accelerations and velocities at 
some point s on the two paths. The bounding closed 
curve represents the equinormal contour corresponding 
to arna~ of the norm under consideration. We note that 
from the properties of a norm the equinormal contour 
describes a convex region. We have scaled the velocity 
f i l  (s) so that  it has the same norm value as a,~,~. Both 
motions give rise to a centripetal acceleration of mag- 
nitude II ~1(s)  1122/p(s) in the original t rajectory and 

II ~2(s)112~/p(") in the second case. Here p(s) is the 
radius of curvature at  s. Both accelerations are perpen- 
dicular to the velocity direction and point toward from 
the center of curvature. We show these accelerations 
a c l  and ~te2 in Fig. 5. At every point, the velocity in 
the second case is at most  that  in the first case. Thus 
the centripetal acceleration in the tracking t rajectory 
is at most tha t  in the original trajectory. This means 
that  as long as the velocity in the tracking trajectory 
does not exceed that  in the original trajectory, we can 
apply the maximum possible acceleration in the tan- 
gential direction and yet follow the original path. Since 
the first motion is a legal one, so is the second one. In 
either case the amount  of tangential acceleration that  
can be applied is limited by the centripetal accelera- 
tion. The tangential acceleration fft2(s) applied is the 
mnaximum possible in the tangential direction as shown 
in Fig. 5. The acceleration ~2(s) is then obtained as a 
vector sum of the normal (centripetal) and tangential 

accelerations. Since we are following the original path 
at each point and since we start  with a zero velocity, 
conditions 1 and 3 in the lemma are satisfied. 

We will now prove that  condition 2 is also satisfied. 
We will show that  for two points with arc distance s 
and s + 6s, where 6s is sufficiently small, the difference 
6~9(s) = ~(s + 6s) - ~(s) is negative. We have 

a~(~) = a II A t ( s )  II +arnax~At(s) 

The general relationship between ~l(S) ,  ~2(s),  ~ i  = 
~,l(S + 8s) and ~ = ~'2(s + 8S) is as shown in Fig. 6. 
Since ~,~. and ~ are in the same direction, 

Similarly, 

And, 

~At(s) = 

Thus, 

~(~) 

11 A~(~)I1=11 ~'1 I I -  II % I1 

( t 2 ( s + ~ s ) - t 2 ( s ) ) - ( t l ( S + ~ ) - t ~ ( s ) )  

6t2(s) -St l (s )  

: ([[ vl. I [ -  I[ ~'2 I])-- (I[ Vl [] -- It v2 If) 

+ amax(~ t2 (8 )  -- ~ t l ( $ ) )  

= (il ~. il - II h [I) - ([I ~ [i- ii ~2 II) 
% amax(6t2(s) -- 6t l (s))  (5) 

We can assume, wlog, the general picture shown in Fig. 
6. As ~s approaches 0, the difference ([[ ~.  [[ - [i % H) 
in the norms of Vl and v l  will be measured in the 
direction perpendicular to the norm contour at Vl" As 
shown in Fig. 7, the maximum change in II ~ i  If will 
occur in this direction. Since, in general, a l  will be 
applied in another direction, we will not achieve the 
maximum change. The discrepancy between the two 
can be measured by taking the difference between the 
maximum change in velocity and the projection of the 
given change in velocity, ~1~ti in the direction of the 
maximum change, as shown in Fig. 7. As 6s --~ 0, this 
measures the actual discrepancy. Similarly, we can get 
the discrepancy in the v2 case. Since the direction 
of ~ l~ t l  and a l  is the same (as is that  of ~2~t2 and 
a2),  we can translate the discrepancies in velocities to 
those in accelerations as shown in Fig. 5. As can be 
seen from Fig. 5, the discrepancies, given by el and e2, 
are proportional to the centripetal accelerations. The 
actual discrepancy for a2 has value at most e2 shown 
in Fig. 5 since due to the convexity of the norm, the 
point p lies above the point q. Therefore, wc have 

e I D12 
- -- (6) 

e 2 D2 2 
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where vl and v2 denote the magnitude of the cor- 
responding velocities in the L2 norm. Now, in (5) 
we have (ll I I -  II V,'l II) = ( a m a x -  Cl)5tl and 
(11 II - II II) = --  2) t2. Combining with 
(6) and rearranging we get 

5O(s) = e25 t2 -e lS t l  

-- -- el (v225t2 -- v125tl 
\ / (7)  

As 5s --~ 0, we have V l  = (~s/~tl)  and v2 = (bs/bt2) 
and therefore v16& = v~bt2. Therefore, 

~9(8) "~ ~lt~tl ( v2 ~ vl (8) 

Since v2 < vl, 60(s) < 0 as 5s ---+ 0. In other words 
~e(~) is non-positive i.e. O(s) is non-increasing. 

6s 

We are now ready to prove the loop elimination 
theorem in the case of arbi t rary norms : 

T h e o r e m  1 Consider a solution al_ : [0, bl] ~ ~2 to 
some given problem (O, ama~, Vmax,  S, F) where § = 

= O. Let P l  : [0,&] ~ C be the arc-parametrized 
path corresponding to this solution. I f  there exist c, 
d E [0,11], c # d, such that ~l(C) = ~ l ( d )  (i.e. the 
path intersects itself) then there exists a solution a 2 : 
[0, b2] ~ ~2 with .corresponding path P2 : [0,12] ~ C 
such that 

1. b2 _< bx. 

2. there do not exist points c' and d' such that c' ¢ 
d' and ~2(c ' )  = ~2(d ') ,  (i.e. the path does not 
intersect itself). 

P r o o f :  The idea of the proof is as follows : We will 
construct the new trajectory by moving along the path 
of the original t rajectory till we come to rest at the 
loop intersection point• At this point, we will ignore 
the loop and continue along the rest of the path. We 
will show that  coming to a stop at the intersection does 
not penalize us and that  the new trajectory takes time 
which is less than or equal to that  taken by the original 
o n e .  

Consider the portion of the (arc-parametrized) tra- 
jectory from d to 11. By Lemma 1 above, there exists a 
solution ~2 defined on [d, ll] such that  ~2(s)  = f i l ( s ) in  
this range, 0(s) is non-increasing in this interval and 
'~2(d) = 0. Similarly, we can define a2 on the interval 
[0,c] by applying the above lemma, in the reverse direc- 
tion, from c to 0. Now, .~2(e) = 0 and ~2(d) = 0. And 
c and d correspond to the same point in C. So, we can 
can now define the new acceleration a2 as stated with 
c = d. If  there are any more loops or self-intersections, 

we can repeat the construction to eliminate them• (We 
note that  this includes trivial loops of the kind where 
the particle just  moves back and forth across the same 
portion of the path•) Since both pieces constitute a so- 
lution to and follow the path of the original trajectory, 
the combined path is a legal path and the combined 
solution is a solution to the original problem. We now 
show that  for each loop elimination, we get a solution 
which takes t ime less than or equal to that  of the tra- 
jectory in the previous iteration. 

Consider the portions of the original and the new 
trajectories from d to 11. (By abuse of notation, we 
will use the same arc-parametrizat ion for this piece of 
both trajectories.) Treat  these two trajectories as com- 
plete trajectories in themselves from d to &. Thus, e.g. 
At(s )  measures the t ime difference starting from d. But 
0(d) =11 Av(d)] ]  +At(d)amar. Put t ing At(d)  = 0 and 
v2(d  ) = 0, we get 0(d) =11 v l ( d )  II- Similarly, we get 
tg(ll) = At( l l )am~, .  In like manner,  consider the por- 
tions of the original and new trajectories from c to 0 in 
reverse arc-parametrization.  We get ~(c) =ll Vl(C)II. 
and tg(0) = At(O)ama~ where we abuse our notation 
and denote the "t ime difference" between these two 
segments at  0 by At(0).  From Lemma 1 we have 
~3(d) _> 0(l l )  and d(c) > 0(0). Thus, 

II vl(c)  II + fl v2(d) IJ_> (At(0) + At(ll))am°. (9) 

Now, consider the loop. We can assume, wlog, the 
picture in Figure 8 (a). Here, c denotes the entry point 
of the loop and d the exit point• Fig. 8 (b) shows the 
velocity vectors v l ( c  ) and v l ( d  ) with the respective 
norm contours• Consider the component  of Vl(C ) in 
the direction perpendicular to the tangent to the con- 
tour at the point corresponding to v 1 (c). By convexity, 
this component has norm at least as much at  that  of 
v 1. When the velocity direction is along the tangent 
direction (point m in Fig. 8 (b)), this component be- 

comes zero• The t ime required is therefore > IIVl(¢)ll 
- -  araa 

We can use a similar argument for the velocity v l (d ) ,  
i.e. consider the component  of v l ( d  ) in the direction 
perpendicular to the tangent to the contour at v l ( d  ). 

• The t ime required for this component  to go to zero by 
moving in the reverse (clockwise) direction is similarly 
llv 1 (a)ll • However, in order to get a lower bound on the 
time taken in the loop as a sum of the times taken for 
the above two cases, we must  ensure that  the tangent 
direction at d has slope less than that  at c as shown 
in Figure 8 (b) (the slope being defined as the angle 
made with the positive x axis). To see that  this is 
true, we observe that  from convexity of the norm con- 
tour the tangent direction has decreasing slope as we 
move clockwise along the contour of the norm. Thus 
the tangent direction at d has slope less than that  at c. 
In the limiting case, the object leaves the loop in the 
direction exactly opposite to the direction of entrance. 
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hi this case the tangent  directions coincide. Thus, in 
all cases we get two distinct t ime intervals, one f rom c 
~o m and the other f rom q to n with 

Hence, 

t (m) - t(c) > II Vl(C)II 

arnax 

t l ( d ) -  t (n )  > II v l ( d ) I I  
arnaz 

tx(d) - t (c)  > II v l (c )  II + II v l (d)  II 
amaz 

Combining  this with (9) we get, 

t l (d)  - t(c) >_ At(O) + At(/1) 

Thus, the t ime taken in the loop is at  least as much as 
the t ime difference between the two trajectories. Ergo, 
we can el iminate the loop to get a new trajectory, with- 
out the loop, which takes t ime less than  or equM to tha t  
taken by original trajectory.  Repeat ing this procedure, 
we obtain a faster t ra jec tory  which has a pa th  which 
does not intersect itself. 

7 O p t i m a l i t y  o f  t h e  c a n o n i c a l  t r a j e c -  

t o r y  

In this section, we show tha t  for any problem there 
exists a canonical solution, which is t ime-opt imal .  

T h e o r e m  2 Let a 1 : [0, bl] ~ ~2 be an optimal solu- 
tion to some problem (0 ,  amax, Vmax, S, F).  Then there 
ezists an optimal solution a 2 to this problem which is 
canonical and which has O(n)  segments. 

P r o o f :  We will show the existence of an opt imal  canon- 
ical t ra jec tory  by deforming the pa th  corresponding to 
the given acceleration homotopical ly  into one which is 
canonical. Star t ing at  s, we move along the pa th  P l  
till we reach a point z which has the following proper ty  
: assume tha t  the t ra jectory f rom (s, ~) to (z, ~) = Z 
is canonical. Thus  we get a new t ra jectory f rom S to 
F such tha t  the t ra jec tory  passes through S and Z but  
such tha t  the new t ra jec tory  has a canonical port ion 
f rom S to Z. The  point Z is ex t remal  in the sense tha t  
the canonical pa th  f rom s to z is tangent  to a vertex or 
to a segment of the obstacle space but  is a legal pa th  
through C. In other words, we "canonize" the trajec- 
tory as far as we can till it touches some contact  point. 
(We will refer to points in C P  such as Z = (z, ~) where 
z is a contact  point in C as "contact  points".)  Denote 
this new t ra jectory by F 1. I t  is possible for the pa th  
corresponding to this t ra jectory to go through more 
than  one contact  point. Let Z 1 be the furthest  contact 

point down the t ra jectory between S and Z. Since the 
port ion of the t ra jectory between S and Z is canonical, 
it follows tha t  the port ion between S and Z 1 is a canon- 
ical segment. We now repeat  the process with the new 
trajectory r l ,  s tar t ing at  Z 1 to obtain another  trajec- 
tory r 2 and so on. Thus,  a t  the k th step, we have a 
t ra jectory r k and contact points Z 1 to Z k on it such 
tha t  the segments Zi,  Zi+ 1 (for 1 < i < k - 1) are 
canonical. Then, we canonize the t ra jectory from Z k 
till we obtain an ext remal  point Z '  such tha t  the tra- 
jectory f rom Z k to Z '  has a contact  point Zk+ 1 which 
is closest to Z' .  

We need to prove several things in order to com- 
plete the proof  of the theorem. First, we need to show 
tha t  for any k the deformat ion of the t ra jectory Fk into 
Fk+l is continuous so as to ensure tha t  even if the sat- 
urated direction changes the t ra jectory obtained does 
not pass through obstacle space. I.e. we need to ensure 
tha t  there exists a point Z '  such tha t  the canonized sec- 
tion between Z k and Z '  passes through a contact point 
Zi+ 1. This  can be done only by ensuring tha t  we de- 
form the t ra jectory continuously. But  this follows from 
the observation made  in Section 5. We noted tha t  the 
position and velocity were continuous functions of the 
end-point position and velocity. At the k th step, we 
move along the pa th  continuously f rom z k. We are 
therefore varying the position and velocity of the end- 
point continuously. Accordingly, the canonical segment 
so obtained, s tar t ing a t  Zk ,  also varies continuously. 
Hence, we are assured tha t  either we will reach the fi- 
nal position or the segment will touch a point Zk+ 1 of 
obstacle space. We then repeat  the process s tar t ing at 
Zk+ 1. This  ensures the validity of the above process 
of obtaining a canonical t ra jectory f rom the given one. 

Next, we show tha t  we can obtain a t ra jectory 
which has O(n) contact  points or we can t ransform it 
into one which does. If  the t ra jectory passes through 
the same contact  point more than  once then it has a 
loop and by the loop el imination theorem we can re- 
place it with another  t rajectory which does not pass 
through the same point more than  once. This  clearly 
does not affect the fact tha t  the t ra jec tory  is made of 
canonical segments. As shown in Fig. 9(a), it is possi- 
ble for the pa th  corresponding to this new tra jectory to 
touch the same edge of the obstacle space at  different 
points. Let w and w ' denote the first and last points 
which touch the same edge as shown in the Fig. 9(a). 
We note tha t  the velocity at  w ~ either has the same or 
opposite direction as tha t  a t  w. We can therefore treat  
the section of the t ra jectory f rom w to w '  as a one- 
dimensional problem. Hence we can replace the entire 
section with a pa th  running along the edge from w to 
w '  as shown in Fig. 9(b) - the command  acceleration 
for this section being bang-bang and parallel to the 
edge. This t ransformat ion does not affect the canoni- 
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cal nature of the trajectory since in the one-dimensional 
case a single bang-bang switch gives the optimal tra- 
jectory. If we treat  only the first and last points along 
such a path (i.e. one moving along an edge) as contact 
points, we see that  each edge can contribute only two 
contact points to the path. Other configurations which 
may arise with contacts at a given segment are treated 
similarly. Thus, the path is made up of O(n) canonical 
segments. 

Finally, we see that  the trajectory obtained is time- 
optimal : for all k, rk+  1 takes t ime less than or equal 
to that  taken by r k. This follows from the fact that  
in r k the section from Z k to Z' is bang-bang in the 
constrained direction and therefore takes t ime less than 
or equal to tha t  taken by r k between the same points. 
The theorem therefore follows. 

8 G e n e r a t i n g  t h e  o p t i m a l  c a n o n i c a l  

t r a j e c t o r y  

In this section, we will sketch the process of generating 
the optimal canonical trajectory. From the previous 
section, we know that  there exists an optimal canonical 
t rajectory from S to F which passes through at most 
n distinct vertices and has at most 2n contact points 
which touch edges. In this section, we show how to 
find it using only a polynomial (in the input) amount  
of space. We will use the theory of the reals to that  
end. An expression in the first order theory of the reals 
has the form 

QlXl . . .QnznP(x l  . . . .  , x , )  

where each Qi is one of the quantifiers B or V and 
P(xl  . . . .  , xn) is a quantifier free boolean formula with 
atomic predicates of the form f j (x ,  . . . .  ,xn) = 0 or 
gk(xl . . . . .  xn) > O, f j  and gk being real polynomials. 

For any two (indeterminate) points in free space, 
with two (indeterminate) velocities, we can write a col- 
lection of polynomial clauses which describe the canon- 
ical segment between the two points, in terms of the 
end-point indeterminates, as was shown in Section 5. 
Combining these clauses with other clauses which check 
that  the segment does not pass through obstacle space, 
we get a clause Q(zi,  Zi+l,  vi, Vi+l,  ti, ti+l) which is 
true iff there exists a canonical segment joining z i and 
zi+ 1 with velocities v i and vi+ 1 and at times ti and 
ti+l respectively. Let M denote a sequence of ver- 
tices and edges, i.e. M describes a possible sequence 
of contact points for a canonical trajectory. For ev- 
ery vertex point in S, we have two indeterminates, the 
velocities in the x and y directions. Similarly for ev- 
ery edge, we have first of all two contact points, and 
for each contact point we have two indeterminates - 
one is the distance along the edge and the other is the 

velocity magnitude (since we know the velocity direc- 
tion is along the edge from the first contact point to 
the second one). For each point z i (whether a vertex 
or edge point), we will represent its indeterminates by 
Pi" Let RM(Z 0 , z 3 n + l , t  ) (where (z 0 , v 0 )  = S and 
(Z3n+l  , V3n+l  ) = F)  be true iff there exists a path of 
at most 3n + 1 canonical segments from S to F follow- 
ing the sequence M. We can write RM in terms of Q 
as follows, 

3p0 3 p l . . .  3P3n+  1 3t0 3 t l . . .  3t3n+l 

N Q(zl, z i+l ,v i ,  v i+l , t i ,  ti+l ) N ( t = t z n + l )  
i=O,...,n 

where the Pi'S denote the indeterminates correspond- 
ing to each contact point as mentioned above. We will 
t ry every possible sequence of vertices and edges. At 
each stage we will compare a new sequence M '  with 
the previous best, say M, using the  following formula, 

3t' vt (nM,(z0, z3n+l ,  t')) 
^(riM(q0, z3n+t ,  t) (t' < t)) 

We note that  the number of alternations between V's 
and 3% is a constant (the Q's each have a V but all the 
Q's are placed together, so there is only one alterna- 
tion). We therefore use Renegar's PSPACE algorithm 
[Re] for the theory of reals with a bounded number of 
quantifier alternations. At each call to the algorithm, 
we only need remember the previous best, thus we need 
only a polynomial amount  of space all told. We can 
get a polynomial number of bits of the minimum time 
and the velocities at each contact by making a polyno- 
mial number of calls as above. Alternately, we can use 
Renegar's algori thm to give us the t ime and velocities 
as roots of some polynomials. Therefore, we have 

T h e o r e m  3 Under lhe Loo norm, the lwo dimensional 
kinodynamic problem (0, areas, Vmaz, S, F),  where S = 
(s, 0) and F = (f,  0), is in PSPACE. 

9 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

In this paper we gave the first algori thm for generat- 
ing an exact t ime-optimal t rajectory for a kinodynamic 
planning problem in the plane. This algorithm runs in 
PSPACE and takes exponential time. We characterized 
the nature of a class of solutions which provides us with 
a t ime-optimal solution. We proved a tracking lemma 
which is applicable to arbi t rary  norms. This lemma 
should prove to be useful in dealing with the different 
variations to this problem and is also of general interest 
since it provides bounds on the t ime difference between 
a given t rajectory and one which tracks it. We then 
showed how to eliminate loops from a given trajectory 
in order to limit the number of contact points a time- 
optimal t rajectory might have. Finally, we drew upon 
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the theory of reals (with a bounded number of alter- 
nations between quantifiers) to obtain a time-optimal 
solution. Several questions arise almost immediately : 

1. The complexity of this problem - is it NP-hard 
or can it be done in polynomial time ? 

. Can the above algorithm be modified to handle 
the case of non-zero velocities at the beginning 
and end of the trajectory ? 

. Can the above approach be extended to the case 
of arbitrary norms, especially the L2 norm? (See 
[RT] for work in this direction.) We have shown 
how to eliminate loops for arbitrary norms; the 
main problem now is characterizing the time- 
optimal solutions. 

4. Exact algorithms for the three-dimensional case. 

There are several other open problems within the 
broad framework of kinodynamic planning. E.g., as 
mentioned earlier, Fortune and Wilfong [FW] and Ja- 
cobs and Canny [JC] address the problem of determin- 
ing the shortest bounded curvature path in the plane 
in the presence of obstacles. However, at present, only 
an approximation algorithm is known for this problem 
and it would be of significant interest to determine the 
complexity of this problem and to provide an exact al- 
gorithm for it. Additionally, a considerable amount of 
work needs to be done to translate such results into 
practice. 
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