
Proceedings of the 2000 IEEE
lntemational Conference on Robotics & Automation

San Francisco. CA April 2000

Path Planning Using Lazy PRM

Robert Bohlin
Department of Mathematics

Chalmers University of Technology
SE-412 96 Goteborg, Sweden

Abstract
This paper describes a new approach t o probabilistic

roadmap planners (PRMs). The overall theme of the
algorithm, called Lazy PRM, i s to minimize the num-
ber of collision checks performed during planning and
hence minimize the running t ime of the planner. Our
algorithm builds a roadmap in the configuration space,
whose nodes are the user-defined initial and goal con-
figurations and a number of randomly generated nodes.
Neighboring nodes are connected by edges representing
paths between the nodes. In contrast with PRMs, our
planner initially assumes that all nodes and edges in the
roadmap are collision-free, and searches the roadmap
at hand for a shortest path between the initial and the
goal node. The nodes and edges along the path are
then checked for collision. If a collision with the ob-
stacles occurs, the corresponding nodes and edges are
removed fFom the roadmap. Our planner either finds
a new shortest path, or first updates the roadmap with
new nodes and edges, and then searches for a shortest
path. The above process i s repeated until a collision-free
path is returned.

Lazy P R M is tailored to eficiently answer single
planning queries, but can also be used for multiple
queries. Experimental results presented in this paper
show that our lazy method i s very eficient in practice.

1 Introduction and Motivation
The basic path planning problem is to find collision-

free paths for a moving object - a robot - among sta-
tionary, completely known obstacles. Denoting the con-
figuration space of the robot by C and the open subset
of collision-free configurations by F, the problem can
be stated as follows: given an initial configuration ginit
and a goal configuration qgoal in 3, find a continuous
curve in F connecting these points, or determine that
none exists [20]. Path planning is becoming increas-
ingly important for automated manufacturing and for
mobile robots, but it has also found applications in com-
puter animations, medical surgery, and molecular biol-

Requirements for Single Query Path Planning
Of particular interest are planners that with little pre-
processing can answer single queries very quickly. Such
planners can be used to replan paths in applications
where the configuration space obstacles could change.
This occurs, for instance, when the robot changes
tools, grasps an object, or a new obstacle enters the
workspace.

ogy (see [211).

Lydia E. Kavraki
Department of Computer Science

Rice University
Houston, TX 77005, USA

Ideally, the time required for planning should relate
to the difficulty of the planning task, i.e., a simple path
in an uncluttered environment should be found quickly,
while a more complicated path may require more time.
In a similar way, the planning time should relate to the
desired quality of the returned path. The quality of a
path is difficult to quantify (see also Section 3.2), but in
general we prefer short paths in C, with respect to some
metric. The planner should allow the user to intuitively
tune short planning time versus high quality.

We would also like the planner to learn to some ex-
tent, i.e., to use information from previous queries in
order to speed up subsequent queries. For example, if
the planner finds a path through a narrow passage in 3,
it should be able to use that information when search-
ing for a path through the same passage in subsequent
queries.

Contribution of This Paper In this paper we
present a lazy approach to probabilistic roadmap plan-
ners (PRMs). Our main objective is to provide a very
fast planner that adheres as closely as possible to the
requirements discussed above. We address standard in-
dustrial applications characterized by complex geome-
try and high-dimensional, relatively uncluttered config-
uration spaces. To handle the complex geometry, which
generally implies time-consuming collision-checking, the
main theme of the algorithm is to minimize the num-
ber of collision-checks performed during planning. By
avoiding local planning and instead keeping the global
view, only the part of the configuration space that is es-
sential in answering a query is explored. Experiments in
a typical industrial environment show that a very large
percentage, on the average 26%, of the total number of
collision checks are actually performed on the returned
collision-free paths, and are therefore inevitable.

Solutions for the cases of cluttered configuration
spaces and fast collision-checking are also proposed,
but neither these cases nor the narrow passage problem
(see [2, 6 , 121) are our main objectives. Our algorithm,
called Lazy PRM, is described in detail in Section 3,
and experimentally evaluated in Section 4 using a real
industrial environment.

2 Probabilistic Techniques
The path planning problem has been extensively

studied in the last two decades, and a number of dif-
ferent approaches are proposed; see [lo, 14, 201 for
overviews. An algorithm is called complete if it always

0-7803-5886-4/00/$10.00@ 2000 IEEE 52 1

will find a solution or determine that none exists. How-
ever, due to the complexity of the path planning prob-
lem [8], complete planners are far too slow to be useful in
practice. Trading completeness for speed, probabilistic
planners have been successfully applied to many prob-
lems in high-dimensional configuration spaces.

The Randomized Path Planner (RPP) in [4] has suc-
cessfully solved problems for robots with more than 60
degrees of freedom [19]. The planner uses a potential
field as a guidance towards the goal, and random walks
to escape local minima.

Another interesting approach is presented in [24] -
the Ariadne’s clew algorithm. Considering the initial
configuration as a landmark, the planner incrementally
builds a tree of feasible (i.e., collision-free) paths as
follows. Genetic optimization is used to search for
a collision-free path from one of the landmarks to a
point as far as possible from all previous landmarks.
The planner places a new landmark at this point, and
searches for a path to the goal configuration. New land-
marks are placed until the goal configuration can be
connected to the tree.

2.1 Probabilistic Roadmap Method
The brief survey in this section is restricted to prob-

abilistic techniques. In particular, the Probabilistic
Roadmap Method [18] is described in detail, since the
method forms the base of our solution. The idea behind
the Probabilistic Roadmap Method (PRM), described
in [17, 18, 271, is to represent and capture the connec-
tivity of 3 by a random network, a roadmap, whose
nodes and edges correspond to randomly selected con-
figurations and path segments respectively. In a pre-
processing step, or a learning phase, a large number of
points are distributed uniformly at random in C, and
those found to be in 3 are retained as nodes in the
roadmap. A local planner is then used to find paths
between each pair of nodes that are sufficiently close
together. If the planner succeeds in finding a path be-
tween two nodes, they are connected by an edge in the
roadmap. In the query phase, the userLspecified start
and goal configurations are connected to the roadmap
by the local planner. Then the roadmap is searched for
a shortest path between the given points.

Even though a powerful local planner will require few
nodes to obtain a well connected roadmap, most im-
plemented PRMs show that it is computationally more
efficient to distribute nodes densely and use a relatively
weak, but fast, local planner [18,27]. The local planner
may for instance only check the straight line between
two nodes. Other local planners are discussed and eval-
uated in [l].

Often the learning phase of PRM has a node enhance-
ment step in order to increase the connectivity of the
roadmap by adding more nodes in difficult regions of
3. Different techniques are used to identify these re-
gions; one way is to distribute new points close to a
number of seeds randomly selected among the existing
nodes. In [l?], the probability that a node is selected
is proportional to &, where b is the number of edges
connected to the node. An alternative selection can be
based on a node’s ratio of failed attempts by the local

planner to find paths to other nodes [18]. Other tech-
niques to increase the connectivity of the roadmap are
described in [2] and [ll].

PRM has been shown to work well in practice in high-
dimensional configuration spaces [17]. In particular, it
is useful for multiple queries, since once an adequate
roadmap has been created, queries can be answered very
quickly.

2.2 Variations of PRM
PRM has a weakness in finding paths through nar-

row passages in 3. The node enhancement step in [17]
was developed in an effort to address this issue. Other
efforts have been made; one is to distribute nodes close
to the boundary of 3, and has led to several new sam-
pling strategies. The planner in [12] initially allows the
robot to penetrate the obstacles to a certain extent.
Small neighborhoods around the configurations just in
collision are then re-sampled in order to place nodes
close to the boundary of 3. The Obstacle Based PRM
(OBPRM) in [2, 31 determines configurations in colli-
sion to be origins of a number of rays. Binary search is
then used along each ray to find points on the boundary
of 3, where roadmap nodes are placed. In [6], the plan-
ner identifies the boundary of 3 by distributing points
in pairs. Each pair is generated by first picking one
point uniformly at random in C, and then picking an-
other point close to the first one. One of the points is
added to the roadmap only if it is in 3 and its pair is
not. Another technique to increase the number of nodes
in narrow passages of 3 is presented in [29]; points are
picked uniformly at random in C and then retracted
onto the medial axis of 3.

A few methods using probabilistic roadmaps, do not
divide the planning process into a learning phase and a
query phase. Given an initial and a goal configuration,
the planner in [26] inserts randomly distributed nodes
in F, one at a time, and connects them to the different
components of the roadmap by a local planner. New
nodes are inserted until the initial and goal configura-
tions can be found in the same connected component
of the roadmap. See also [9] and [15] for related algo-
rithms. The latter paper gives an adaptive scheme for
adjusting the power of the local planner.

Other methods, described in [13] and [22], build two
trees rooted at the initial and goal configurations re-
spectively. As soon as the two trees intersect, a feasible
path can be extracted. In [13], the trees are expanded
by generating new nodes randomly in the vicinity of
the two trees, and connecting them to the trees by a
local planner. The planner in [22] iteratively generates
a configuration, an attractor, uniformly at random in C.
Then, for both trees, the node closest to the attractor
is selected and a local planner searches for a path of a
certain maximum length towards the attractor. A new
node is placed at the end of both paths. The process
stops when the two trees intersect.

The general theme for roadmap algorithms is to con-
struct a network of paths verified to be collision-free by
a local planner.. Unfortunately, it is difficult to find a
global strategy that can use local planners efficiently in
order to avoid regions from where the algorithm can-

522

not proceed to the goal. This often means that too
much time is spent on planning local paths that will
not appear in the final path. Moreover, most proba-
bilistic algorithms either heavily rely on fast collision
checking or require long preprocessing. Collision check-
ing is in many real applications with complex workcells
very time consuming, making probabilistic planners yet
too slow for single queries in industrial environments in
which small changes occur.

Our solution is to avoid using local planners as
much as possible, and instead keep a more global view
throughout the entire planning process. In the next sec-
tion, we present Lazy PRM - a path planning algorithm
tailored for single queries, but which is also useful for
multiple queries. To make the planner fast, the main
theme is to minimize the number of collision checks.

3 LazyPRM
This section describes a new algorithm for single and

multiple query path planning. The algorithm is similar
to the original PRM in [17] in the sense that the aim
is to find the shortest path in a roadmap generated by
randomly distributed configurations. In contrast with
existing PRMs, we do not build a roadmap of feasible
paths, but rather a roadmap of paths assumed to be
feasible. The idea is to lazily evaluate the feasibility of
the roadmap as planning queries are processed. Similar
ideas about lazy evaluation have been developed con-
currently but independently in [25] in a planner called
f izzy PRM.

In other words, let qinit, qgoal, and a number of uni-
formly distributed points form nodes in a roadmap, and
connect by edges each pair of nodes being sufficiently
close together. Given a procedure that estimates the
length of a path, we find a shortest feasible path in the
roadmap by repeatedly searching for a shortest path,
and then checking whether it is collision-free or not.
Each time a collision occurs, we remove the correspond-
ing node or edge from the roadmap, and search for a new
shortest path.

This procedure can terminate in either of two ways.
If there exist feasible paths in the roadmap between
qinit and qgoal, we will find a shortest one among them.
Otherwise, if there is no feasible path, we will eventually
find qinit and qgoal in two disjoint components of the
roadmap. In the latter case we either report failure or, if
we still have time, add more nodes to the roadmap by a
procedure we call node enhancement, and start search-
ing again. A high-level description of the algorithm is
given in Figure 1, and the rest of this section explains
the different steps of the algorithm in more detail.

3.1 Building the Initial Roadmap
The first step of the algorithm is to build a roadmap

6 in C consisting of qinit E 7, qgoal E 7, and Ninit

nodes distributed uniformly at random. Ninit is a pa-
rameter determined by the user. We can, of course, use
heuristics to increase the density of nodes in regions we
in advance believe are of particular interest, but this is
in general difficult.

9init Qgool

Build initial
roadmap

node edge enhancement
Search for a Lln shortest path

Remove colliding

Check path
for collision

t
Collision-free path

Figure 1: High-level description of Lazy PRM.

Selecting Neighbors We connect each node in 6 by
edges to a set of neighbor nodes. An edge represents the
straight line path in C between two nodes. (In principle,
any other local technique for connecting nodes could
be substituted here.) Since it would take far too much
memory to connect all pairs of nodes, and it is less likely
that the straight line path between two nodes far apart
is feasible, it is natural to only consider nodes which are
sufficiently close together.

In order to select reasonable neighbors, we need a
metric pcoll : C x C + [0, 00) such that the distance be-
tween two configurations under this metric reflects the
difficulty of connecting them by a collision-free straight
line path. Then we connect each pair of nodes (q,q')
such that pcoll(q, q') 5 Rneighb. For any fixed radius
Rneighb, the number of neighbors of a node is a random
variable, so depending on the initial number of nodes,
Nini t , we choose Rneighb such that the expected number
of neighbors equals the parameter Mneighb determined
by the user.

In many cases it is harder to make feasible connec-
tions in certain directions than in others. Consider for
instance an articulated robot arm; then it is more likely
that a collision occurs when the base joint is moving one
unit, than if a joint close to the end-effector is moving
one unit. With this in mind, we let pcoll be a weighted
Euclidean metric,

i= 1

where d is the dimension of C, { ~ i } $ ~ are positive
weights, W = diag(wl,. . . , wi), and xT is the trans-
pose of x. The weights are chosen in proportion to the
maximum possible distance (Euclidean distance in the
workspace) traveled by any point on the robot, when
moving one unit in C along the corresponding axis. This
metric is easy to use and has been shown to work well
in our experiments presented in Section 4.

3.2
The second step in the algorithm is to find a short-

est path in 4 between qinit and qgoal. We use the A*
algorithm [20], and a metric Ppath : c x c + [o,oo) to
measure the length of a path and the remaining distance

Searching for a Shortest Path

523

to qgoal. If the search procedure finds a path, we need
to check it for collision. Otherwise, if no path exists in
the roadmap, we either report failure, or go to the node
enhancement step to add more nodes to the roadmap
and start searching again. The choice is determined by
the overall time allowed to solve the problem.

By defining ppath, we give preference to certain paths
and reject others, i.e., decide which paths are of high
quality and which paths are of poor quality. In this
paper we focus on articulated robots and use the Eu-
clidean configuration space I1 x . . . x Id, where Ii is the
range of joint i . The metric Ppath is a weighted Eu-
clidean metric, similar to (l), and the weights are equal
to 5, i = 1, ..., d, where vi is the maximum angular ve-
locity of joint i . This tends to give preference to paths
with short execution time, which in many applications
is the most interesting response variable.

3.3 Checking Paths for Collision
When the A* algorithm has found a shortest path in

the roadmap between ginit and qgoal, we need to check
the nodes and edges along the path for collision. The
edges are discretised and checked with a certain resolu-
tion, so our algorithm only requires a collision checker
for points in C; see [7, 23, 281.

The overall purpose of the Search, Check, and Re-
move steps of our algorithm (Figure l), is roughly to
identify and remove colliding nodes and edges of the
roadmap until the shortest path between ginit and qgoal
is feasible. Accordingly, when checking a path for
coIlision, we are not primarily interested in verifying
whether an individual node or edge is in T or not, but
rather to remove colliding nodes and edges as efficiently
as possible. Since a removal of a node implies all its
connected edges to be removed, it seems reasonable to
first check the feasibility of the nodes along the path,
before checking the edges.

Checking Nodes Starting respectively with the first
and the last node on the examined path and working
toward the center, we alternately check the nodes along
the path. As soon as a collision is found, we remove
the corresponding node, and search for a new shortest
path.

The reason for checking the nodes in this order is that
the probability of having the shortest feasible path via
a particular node is higher if the node is close to either
ginit or qgool, so we want to check end-nodes first; see [5]
for a discussion.

Checking Edges If all nodes along the path are in F,
we start checking the edges in a similar fashion; work-
ing from the outside in. However, to minimize the risk
of doing unnecessary collision checks, we first check all
edges along the path with a coarse resolution, and then
do stepwise refinements until the specified resolution is
reached. As with the nodes, if a collision is found, we
remove the corresponding edge, and search for a new
shortest path. If no collision is found along the path,
the algorithm terminates and returns the collision-free
path.

To make this algorithm efficient, we of course record
which nodes have been checked for collision, and to
which resolution each edge has been checked, in order
to avoid checking any point in C more than once.

The total number of collision checks depends on the
resolution with which the edges along the path are
checked. Again, since pcoll reflects the probability of
collision, we determine the resolution with respect to
this metric. Since the resolution should depend on the
scale of C and the weights defining the metric, we in-
troduce a parameter Mcoll, specifying the number of
collision checks required to check the longest possible
straight line path in C. In other words, assuming that C
is a &dimensional rectangle and q and q' are two oppo-
site corners, the resolution - quantified by a step-size 6
- is related to the length of the diagonal of C according
to

3.4 Node Enhancement
If the search procedure fails, no feasible path between

ginit and qgoal exists in the roadmap and new nodes are
necessary in order to find one. In the node enhancement
step, we generate Nenh new nodes, insert them to G, and
select neighbors in the same way as when G was initially
built.

We may not only distribute the new nodes uniformly,
but rather use the information available in the roadmap
(or what is left of the roadmap), in order to distribute
them in difficult regions of C. In a method similar to
the node enhancement in [17], we select a number of
points in G, called seeds, and then randomly distribute
a new point close to each of them.

Although the seeds may help us identify difficult re-
gions of C, we still want to maintain a smooth distri-
bution all over C, because the knowledge about C is
limited and we do not want to rely too much on the
selection of seeds. In our algorithm, we let half of the
enhancement nodes be uniformly distributed, and the
rest distributed around seeds. This ensures probabilistic
completeness, i.e., the probability of finding an existing
path approaches 1 as time goes to infinity; see [5] for a
proof.

Selecting Seeds The set of edges which have been
removed from the roadmap and have at least one end-
point in 3, will certainly intersect the boundary of T.
Using the mid-points of these edges as seeds, may help
us distribute points close to the boundary of F.

However, if the enhancement step is executed sev-
eral times, this may cause problems with clustering of
nodes. Assume that we add a new node q. This node
will give rise to a number of edges which in the next en-
hancement step may increase the probability of adding
even more nodes close to q. Thus, the distribution of
new enhancement nodes depends on the preceding en-
hancement steps, and may eventually cause undesired
clusters of nodes. To avoid this phenomenon, we only
use edges whose end-nodes are generated uniformly at
random when selecting seeds.

524

Figure 2: Example of a seed q in a 2-dimensional con-
figuration space. If a new point q is distributed accord-
ing to N d (q , E), with C as in (3), then q is distributed
within the confidence ellipse (solid line) with probability
1 - a. The dashed ellipses are contours of the distribu-
tion function. w1 and w2 are the weights defined in
(1).

Distributing New Nodes Around Seeds When
distributing a new point q around a seed q, we use
the multivariate normal distribution. This distribution
is smooth, easy to use, and allows us to control the
distribution of q in terms of the metric pcoll. Hence,
we can stretch the distribution in directions where the
probabilities of making feasible connections are higher.

Introducing two parameters a E (0 , l) and X > 0, we
will show that we can choose a distribution such that

Pcoll(Q, 7) 5 ARneighb (2)
is an event with probability 1 - a; see Figure 2 . Rneighb
is the maximum length of an edge defined in Section
3.1.

To achieve this property, we define a covariance ma-
trix C as follows:

Here W is the same as in (1) and xi(a) is the upper a
percentile of a X2-distribution with d degrees of freedom
(dof). Then we let the new point q - N d (q , C) , i.e., q
is multivariate normally distributed with d dof, mean
q, and covariance matrix C. Since C is diagonal, this
simply means that each component qi, i = 1, . . . , d, of q
is normally distributed with mean qi and variance Ci, i .

To show (2), we use that (q - q) * C - l (q - 7) is x2-
distributed with d dof [16]. Thus, the event

has probability 1 - a. Using (1) and (3), gives the con-
fidence ellipsoid in (2).

If we choose (Y = 0.05, then the parameter X con-
trols the size of the 95% confidence ellipsoid relative to
Rneighb (see Figure 2). In our experiments we found
that X = 1 is a good choice.

3.5 Multiple Queries
When the planner has found a collision-free path, it

terminates and returns the path. Information about
which nodes and edges have been checked for collision
is stored in the roadmap, and as long as C remains the
same, we use the same roadmap when processing sub-

(Q - ?dTC-'(q - 5 x m

sequent queries. Thus, we benefit from the information
already obtained. The new initial and final configura-
tions are simply added to the roadmap, and the same
algorithm, except for the initial generation of nodes, is
run again.

As several queries are processed, more and more of
the roadmap will be explored, and the planner will even-
tually find paths via nodes and edges which have already
been checked for collision. This makes the planner effi-
cient for multiple queries.

Figure 3: The workcell used in our experiments. The
robot is in its home configuration denoted by A.

4 Experimental Results
In this section we present some performance tests of

Lazy PRM when applied to a 6 dof robot in a realistic
industrial environment. The planner has been imple-
mented in C++ as a plug-in module to RobotStudio'
- a simulation and off-line programming software run-
ning under Windows NT. The collision checks are han-
dled internally in RobotStudio. The experiments have
been run on a PC with a 400 MHz Pentium I1 processor
and 512 MB RAM. In the tests we let Ninit = 10000,
kfneighb = 60, Mcoll = 200, and N e n h = 500.

4.1 Path Planning Tasks
Our test example is a part of a manufacturing process

in which an ABB 4400 robot is tending press breaking.
In this particular case, plane sheets of metal are picked
at a pallet, bent twice by the hydraulic press shown in
Figure 3, and then placed at another pallet.

The process is divided into several steps, and our aim
is to automatically plan the unconstrained paths of the
robot. We let A to J denote ten different configurations
shown in Figures 3 and 4. These are used as either
initial or goal configurations in eight planning tasks,
denoted for example A + B, where A is the initial
configuration and B is the goal configuration.

The scenario is as follows. Starting from the home
configuration A , the robot picks a sheet of metal from
the pallet at B (task A + B) , adjusts the grip at C
(task B -+ C), and puts the sheet-metal at the press

RobotStudio is developed by ABB Digital Plant Technologies
AB, Goteborg, Sweden.

525

-

Configuration H

Configuration C

Configuration I Configuration I

Configuration D

Configuration G

Configuration J
Figure 4: Configurations B to J used in the experiments.

D (task C -+ 0). After the breaking, the robot grasps
the sheet-metal at E , moves to the re-gripper F (task
E + F) , places the sheet-metal, moves to the other side
G (task F + G), grasps the sheet-metal, and moves
back to the press H (task G + H) . After the second
breaking, the sheet-metal is grasped at configuration I
and placed at the pallet J (task I + J) . Then the robot
returns to the home configuration A (task J -+ A) .

Thus, we have eight paths to plan. Note that during
this series of steps, C changes several times. As soon
as we grasp or place a sheet of metal, the collision-free
part, 7, is changing. Neglecting the small displacement
of the sheet-metal caused by the centering operation at
C, the tasks B + C and C + D can be planned in the
same configuration space. Accordingly, we have seven
different configuration spaces in which to plan, and we
have have to build one roadmap in each of them.

The reported results include the number of collision
checks, the number of enhancement steps, and the plan-
ning time; the minimum, average, and maximum values,
based on 20 consecutive runs for each task, are shown
in Tables l(a) - l(c). The average number of collision
checks performed on nodes and edges respectively are
presented, as well as the average number of collision
checks performed on the collision-free paths that the
planner returned. The planning times in Table l(c) are
divided into graph building (including distance calcula-

tions and node and edge adding), graph searching, and
collision checking.

In the last column of Table 1, the average values of
the recorded data are summed up, thus indicating the
average number of collision checks and average planning
times for the entire press breaking operation.

In Table l(d), we have for comparison reasons in-
cluded some results obtained with a PRM-like algo-
rithm. For each task, we simply checked all nodes and
edges for collision in one of the roadmaps built by Lazy
PRM in the initial step (see Figure 1). This corresponds
to the learning phase without node enhancement in the
original PRM [17]. Note that even with this long pre-
processing, there is no guarantee that the planner will
find a feasible path immediately. In Table l(b), we see
that several enhancement steps are needed with Lazy
PRM, thus also needed here.

4.2 Interpretation of Results
We clearly see in Table l(a) that collision check-

ing represents the vast majority of the planning time
(SO%), but also that the graph building takes a lot of
time (18%). Note that for the task C + D, the same
roadmap is used as for the task B + C, making the
graph building time significantly shorter. Interestingly,
the time spent on graph searching is negligible, about
2%. Even if we carefully select the points to check

526

Task

I Planning time (sec.) 11 56625 I 31428 1 32299 I 35840 I 51774 I 35097 I 35200 I 56234 11
Table l(d).

Table 1: Performance data for Lazy PRM based on 20 consecutive runs for each task. Table l (d) shows data for
PRM based on one run for each task. The initial number of nodes, Nznzt, is 10000 in all tests.

for collision, and frequently search the roadmap for the
shortest path, the total time spent on that is still very
short.

Comparing the average number of collision checks
performed by Lazy PRM (92 - 682) in Table l(a) to the
number of collision checks required to explore the entire
initial roadmap (of order 500 000) in Table l(d), we see
that Lazy PRM only explores a small fraction, less than
O. l%, of the roadmap. We also see that a large percent-
age, 26%, of the total number of collision checks per-
formed are actually done on the returned collision-free
paths, and are therefore inevitable. This is the strength
of the algorithm; by avoiding local planning and instead
keeping a more global view, only the essential part of
the roadmap is explored. As a consequence, very few
edges - often only the edges along the final path - are
checked with the finest resolution. This also makes the
algorithm relatively insensitive to the resolution with
which the paths are checked.

Table l(b) reveals another important property of
Lazy PRM and this is the ability to efficiently conclude
that node enhancement is needed. Although several en-
hancement steps are needed in many cases, the number
of collision checks in Table l (a) is still very small com-
pared with the total number of nodes in the roadmap.
Thus, by only checking a small number of nodes (pos-
sibly also some edges), the algorithm can conclude that
no feasible path exists in the roadmap, hence proceed

to the node enhancement step.

5 Discussion
We have described a new probabilistically complete

path planning algorithm which is particularly useful in
high dimensional, relatively uncluttered configuration
spaces, especially when collision checking is an expen-
sive operation. Single queries are handled very quickly;
indeed, no preprocessing is required. As subsequent
queries are processed, the algorithm learns more about
the configuration space since it automatically retains in-
formation obtained during previous queries. Thus, the
planner works efficiently also for multiple queries.

The aim of Lazy PRM is essentially to minimize the
number of collision checks while searching the shortest
feasible path in a roadmap in the context of a PRM
planner. This is done on the expense of frequent graph
search. For a complex robot working in a complex
workspace, like our 6 dof example, collision checking
is a expensive operation, and careful selection of the
points being checked for collision reduces the planning
time considerably.

Lazy PRM has essentially one parameter that is crit-
ical for the performance - Ninit, the initial number of
nodes. Ninzt is strongly correlated to the probability
of finding a feasible path without using the node en-
hancement step, and the optimal choice depends on the
dimension of C, the workspace, the planning task, and

527

the desired quality of the collision-free path. Our fu-
ture work includes an investigation of the dependence
between N,,,,t and the planning time in different envi-
ronments.

Probabilistic techniques, like Lazy PRM, often give
very fast planning. However, in Table l(c), we can see
that the maximum planning time is approximately twice
its long as the average planning time. New improved
enhancement techniques are needed in order to make
the algorithms more robust in the sense that the worst
case performance is improved. This will also be a topic
of our future research.

Acknowledgements The authors would like to thank
ABB Digital Plant Technologies AB for initiating the project
and for providing suitable software. Parts of this work was
performed during the visit of Robert Bohlin to the Robotics
Group at the Computer Science Department at Rice Univer-
sity. Robert Bohlin was supported by NUTEK, the Swedish
National Board for Industrial and Technical Development,
project P10499. Work on this paper by Lydia Kavraki has
been supported in part by NSF CAREER Award IRI-970228
and NSF CISE SA1728-21122N. The authors would like to
thank all members of the robotics group at Rice, Christian
Nielsen and Jean-Claude Latombe for their comments.

References
(11 N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and

D. Vallejo. Choosing good distance metrics and local
planners for probabilistic roadmap methods. In Proc.
IEEE Int. Conf. on Rob. €4 Aut., 1998.

[2] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and
D. Vallejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In P. K. Agarwal, L. E. Kavraki, and
M. Mason, editors, Robotics: The Algorithmic Perspec-
tive, pages 630-637. AK Peters, 1998.

A randomized roadmap
method for path and manipulation planning. In Proc.
IEEE Int. Conf. on Rob. €4 Aut., pages 113-120, 1996.

[4] J. Barraquand and J.C. Latombe. Robot motion plan-
ning: A distributed representation approach. Int. J . of
Rob. Research, 10:628-649, 1991.

Motion Planning for Industrial Robots.
Licentiate thesis, Chalmers University of Technology,
1999.

[6] V. Boor, M.H. Overmars, and F. van der Stappen. The
Gaussian sampling strategy for probabilistic roadmap
planners. In Proc. IEEE Int. Conf. on Rob. €4 Aut.,
pages 1018-1023, 1999.

[7] S. Cameron. Enhancing GJK: Computing minimum
distance and penetration distanses between convex
polyhedra. In Proc. IEEE Int. Conf. on Rob. €4 Aut.,
pages 3112-3117, 1997.

[8] J.F. Canny. The Complexity of Robot Motion Planning.
MIT Press, Cambridge, MA, 1988.

[3] N.M. Amato and Y. Wu.

[5] R. Bohlin.

B. Glavina. Solving findpath by combination of goal-
directed and randomized search. In Proc. IEEE Int.
Conf. on Rob. €4 Aut., pages 1718-1723, 1990.

K. Gupta and A. P. del Pobil. Practical Motion Plan-
ning in Robotics. John Wiley, West Sussex, England,
1998.

[ll] T. Horsch, F. Schwarz, and H. Tolle. Motion planning
for many degrees of freedom - random reflections at C-
space obstacles. In Proc. IEEE Int. Conf. on Rob. €4
Aut., pages 3318-3323, 1994.

[12] D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and
S. Sorkin. On finding narrow passages with probabilis-
tic roadmap planners. In P. Agarwal, L. Kavraki, and
M. Mason, editors, Robotics: The Algorithmic Perspec-
tive, pages 141-154. A K Peters, 1998.

[13] D. Hsu, J. C. Latombe, and R. Motwani. Path planning
in expansive configuration spaces. In Proc. IEEE Int.
Conf. on Rob. €4 Aut., pages 2719-2726, 1997.

[14] Y.K. Hwang and N. Ahuja. Gross motion planning - a
survey. ACM Comp. Surveys, 24(3):219-291, 1992.

[15] P. Isto. A two-level search algorithm for motion plan-
ning. In Proc. IEEE Int. Conf. on Rob. €4 Aut., pages

[16] R.A. Johnson and D.W. Wichern. Applied Multivariate
Statistical Analysis. Prentice Hall, New Jersey, 1998.

[17] L.E. Kavraki and J.C. Latombe. Randomized prepro-
cessing of configuration space for fast path planning.
In Proc. IEEE Int. Conf. on Rob. €4 Aut., pages 2138-
2145, 1994.

[IS] L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Over-
mars. Probabilistic roadmaps for fast path planning
in high dimensional configuration spaces. IEEE Fr. on

[19] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe.
Planning motions with intentions. Computer Graphics
(SIGGRAPH’gd), pages 395-408, 1994.

[20] J.C. Latombe. Robot Motion Planning. Kluwer, Boston,
MA, 1991.

[21] J.C. Latombe. Motion planning: A journey of robots,
molecules, digital actors, and other artifacts. Int. J . of
Rob. Research, 18(11) : 11 19-1 128, 1999.

(221 S.M. LaValle and J.J. Kuffner. Randomized kinody-
namic planning. In Proc. IEEE Int. Conf. on Rob. €4
Aut., pages 473-479, 1999.

[23] M.C. Lin and J.F. Canny. A fast algorithm for incre-
mental distance computation. In Proc. IEEE Int. Conf.
on Rob. €4 Aut., pages 1008-1014, 1991.

[24] E. Mazer, J.M. Ahuactzin, and P. Bessihre. The Ari-
adne’s clew algorithm. J . of Art. Intelligence Research,

[25] C.L. Nielsen and L.E. Kavraki. A two level fuzzy PRM
for manipulation planning. Technical Report TR2000-
365, Rice University, 2000.

[26] M. Overmars. A random approach to motion planning.
Technical Report RUU-CS-92-32, Utrecht University,
the Netherlands, 1992.

A probabilistic learn-
ing approach to motion planning. In K.Y. Goldberg,
D. Halperin, J.C. Latombe, and R.H. Wilson, editors,
Algorithmic Foundations of Robotics, pages 19-37. A K
Peters, 1995.

1281 F. Thomas and C. Torras. Interference detection be-

2025-2031, 1997.

Rob. €4 Aut., 12:566-580, 1996.

9:295-316, 1998.

[27] M. Overmars and P. Svestka.

tween non-convex polyhedra revisited with a practical
aim. In Proc. IEEE Int. Conf. on Rob. €9 Aut., 1994.
S.A. Wilmarth, N.M. Amato, and P.F. Stiller.
MAPRM: A probabilistic roadmap planner with sam-
pling on the medial axis of the free space. In Proc. IEEE
Int. Conf. on Rob. €4 Aut., pages 1024-1031, 1999.

528

