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Abstract 
This paper describes a new approach t o  probabilistic 

roadmap planners (PRMs).  The overall theme of the 
algorithm, called Lazy PRM,  i s  to  minimize the num- 
ber of collision checks performed during planning and 
hence minimize the running t ime of the planner. Our 
algorithm builds a roadmap in the configuration space, 
whose nodes are the user-defined initial and goal con- 
figurations and a number of randomly generated nodes. 
Neighboring nodes are connected by edges representing 
paths between the nodes. In contrast with PRMs, our 
planner initially assumes that all nodes and edges in the 
roadmap are collision-free, and searches the roadmap 
at hand for a shortest path between the initial and the 
goal node. The  nodes and edges along the path are 
then checked for collision. If a collision with the ob- 
stacles occurs, the corresponding nodes and edges are 
removed fFom the roadmap. Our planner either finds 
a new shortest path, or  first updates the roadmap with 
new nodes and edges, and then searches for a shortest 
path. The  above process i s  repeated until a collision-free 
path is returned. 

Lazy P R M  is tailored to  eficiently answer single 
planning queries, but can also be used for multiple 
queries. Experimental results presented in this paper 
show that our lazy method i s  very eficient in practice. 

1 Introduction and Motivation 
The basic path planning problem is to find collision- 

free paths for a moving object - a robot - among sta- 
tionary, completely known obstacles. Denoting the con- 
figuration space of the robot by C and the open subset 
of collision-free configurations by F, the problem can 
be stated as follows: given an initial configuration ginit 
and a goal configuration qgoal in 3, find a continuous 
curve in F connecting these points, or determine that 
none exists [20]. Path planning is becoming increas- 
ingly important for automated manufacturing and for 
mobile robots, but it has also found applications in com- 
puter animations, medical surgery, and molecular biol- 

Requirements for Single Query Path Planning 
Of particular interest are planners that with little pre- 
processing can answer single queries very quickly. Such 
planners can be used to replan paths in applications 
where the configuration space obstacles could change. 
This occurs, for instance, when the robot changes 
tools, grasps an object, or a new obstacle enters the 
workspace. 

ogy (see [211). 
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Ideally, the time required for planning should relate 
to the difficulty of the planning task, i.e., a simple path 
in an uncluttered environment should be found quickly, 
while a more complicated path may require more time. 
In a similar way, the planning time should relate to the 
desired quality of the returned path. The quality of a 
path is difficult to quantify (see also Section 3.2), but in 
general we prefer short paths in C, with respect to some 
metric. The planner should allow the user to intuitively 
tune short planning time versus high quality. 

We would also like the planner to learn to some ex- 
tent, i.e., to use information from previous queries in 
order to speed up subsequent queries. For example, if 
the planner finds a path through a narrow passage in 3, 
it should be able to use that information when search- 
ing for a path through the same passage in subsequent 
queries. 

Contribution of This Paper In this paper we 
present a lazy approach to probabilistic roadmap plan- 
ners (PRMs). Our main objective is to provide a very 
fast planner that adheres as closely as possible to the 
requirements discussed above. We address standard in- 
dustrial applications characterized by complex geome- 
try and high-dimensional, relatively uncluttered config- 
uration spaces. To handle the complex geometry, which 
generally implies time-consuming collision-checking, the 
main theme of the algorithm is to minimize the num- 
ber of collision-checks performed during planning. By 
avoiding local planning and instead keeping the global 
view, only the part of the configuration space that is es- 
sential in answering a query is explored. Experiments in 
a typical industrial environment show that a very large 
percentage, on the average 26%, of the total number of 
collision checks are actually performed on the returned 
collision-free paths, and are therefore inevitable. 

Solutions for the cases of cluttered configuration 
spaces and fast collision-checking are also proposed, 
but neither these cases nor the narrow passage problem 
(see [2, 6 ,  121) are our main objectives. Our algorithm, 
called Lazy PRM, is described in detail in Section 3, 
and experimentally evaluated in Section 4 using a real 
industrial environment. 

2 Probabilistic Techniques 
The path planning problem has been extensively 

studied in the last two decades, and a number of dif- 
ferent approaches are proposed; see [lo, 14, 201 for 
overviews. An algorithm is called complete if it always 
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will find a solution or determine that none exists. How- 
ever, due to the complexity of the path planning prob- 
lem [8], complete planners are far too slow to be useful in 
practice. Trading completeness for speed, probabilistic 
planners have been successfully applied to many prob- 
lems in high-dimensional configuration spaces. 

The Randomized Path Planner (RPP) in [4] has suc- 
cessfully solved problems for robots with more than 60 
degrees of freedom [19]. The planner uses a potential 
field as a guidance towards the goal, and random walks 
to escape local minima. 

Another interesting approach is presented in [24] - 
the Ariadne’s clew algorithm. Considering the initial 
configuration as a landmark, the planner incrementally 
builds a tree of feasible (i.e., collision-free) paths as 
follows. Genetic optimization is used to search for 
a collision-free path from one of the landmarks to a 
point as far as possible from all previous landmarks. 
The planner places a new landmark at this point, and 
searches for a path to the goal configuration. New land- 
marks are placed until the goal configuration can be 
connected to the tree. 

2.1 Probabilistic Roadmap Method 
The brief survey in this section is restricted to prob- 

abilistic techniques. In particular, the Probabilistic 
Roadmap Method [18] is described in detail, since the 
method forms the base of our solution. The idea behind 
the Probabilistic Roadmap Method (PRM), described 
in [17, 18, 271, is to represent and capture the connec- 
tivity of 3 by a random network, a roadmap, whose 
nodes and edges correspond to randomly selected con- 
figurations and path segments respectively. In a pre- 
processing step, or a learning phase, a large number of 
points are distributed uniformly at random in C, and 
those found to be in 3 are retained as nodes in the 
roadmap. A local planner is then used to find paths 
between each pair of nodes that are sufficiently close 
together. If the planner succeeds in finding a path be- 
tween two nodes, they are connected by an edge in the 
roadmap. In the query phase, the userLspecified start 
and goal configurations are connected to the roadmap 
by the local planner. Then the roadmap is searched for 
a shortest path between the given points. 

Even though a powerful local planner will require few 
nodes to obtain a well connected roadmap, most im- 
plemented PRMs show that it is computationally more 
efficient to distribute nodes densely and use a relatively 
weak, but fast, local planner [18,27]. The local planner 
may for instance only check the straight line between 
two nodes. Other local planners are discussed and eval- 
uated in [l]. 

Often the learning phase of PRM has a node enhance- 
ment step in order to  increase the connectivity of the 
roadmap by adding more nodes in difficult regions of 
3. Different techniques are used to identify these re- 
gions; one way is to distribute new points close to a 
number of seeds randomly selected among the existing 
nodes. In [l?], the probability that a node is selected 
is proportional to &, where b is the number of edges 
connected to the node. An alternative selection can be 
based on a node’s ratio of failed attempts by the local 

planner to find paths to other nodes [18]. Other tech- 
niques to increase the connectivity of the roadmap are 
described in [2] and [ll]. 

PRM has been shown to work well in practice in high- 
dimensional configuration spaces [17]. In particular, it 
is useful for multiple queries, since once an adequate 
roadmap has been created, queries can be answered very 
quickly. 

2.2 Variations of PRM 
PRM has a weakness in finding paths through nar- 

row passages in 3. The node enhancement step in [17] 
was developed in an effort to  address this issue. Other 
efforts have been made; one is to distribute nodes close 
to the boundary of 3, and has led to several new sam- 
pling strategies. The planner in [12] initially allows the 
robot to penetrate the obstacles to a certain extent. 
Small neighborhoods around the configurations just in 
collision are then re-sampled in order to place nodes 
close to the boundary of 3. The Obstacle Based PRM 
(OBPRM) in [2, 31 determines configurations in colli- 
sion to be origins of a number of rays. Binary search is 
then used along each ray to find points on the boundary 
of 3, where roadmap nodes are placed. In [6], the plan- 
ner identifies the boundary of 3 by distributing points 
in pairs. Each pair is generated by first picking one 
point uniformly at random in C, and then picking an- 
other point close to the first one. One of the points is 
added to the roadmap only if it is in 3 and its pair is 
not. Another technique to increase the number of nodes 
in narrow passages of 3 is presented in [29]; points are 
picked uniformly at random in C and then retracted 
onto the medial axis of 3. 

A few methods using probabilistic roadmaps, do not 
divide the planning process into a learning phase and a 
query phase. Given an initial and a goal configuration, 
the planner in [26] inserts randomly distributed nodes 
in F, one at a time, and connects them to the different 
components of the roadmap by a local planner. New 
nodes are inserted until the initial and goal configura- 
tions can be found in the same connected component 
of the roadmap. See also [9] and [15] for related algo- 
rithms. The latter paper gives an adaptive scheme for 
adjusting the power of the local planner. 

Other methods, described in [13] and [22], build two 
trees rooted at the initial and goal configurations re- 
spectively. As soon as the two trees intersect, a feasible 
path can be extracted. In [13], the trees are expanded 
by generating new nodes randomly in the vicinity of 
the two trees, and connecting them to the trees by a 
local planner. The planner in [22] iteratively generates 
a configuration, an attractor, uniformly at random in C. 
Then, for both trees, the node closest to the attractor 
is selected and a local planner searches for a path of a 
certain maximum length towards the attractor. A new 
node is placed at the end of both paths. The process 
stops when the two trees intersect. 

The general theme for roadmap algorithms is to con- 
struct a network of paths verified to be collision-free by 
a local planner.. Unfortunately, it is difficult to find a 
global strategy that can use local planners efficiently in 
order to avoid regions from where the algorithm can- 
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not proceed to the goal. This often means that too 
much time is spent on planning local paths that will 
not appear in the final path. Moreover, most proba- 
bilistic algorithms either heavily rely on fast collision 
checking or require long preprocessing. Collision check- 
ing is in many real applications with complex workcells 
very time consuming, making probabilistic planners yet 
too slow for single queries in industrial environments in 
which small changes occur. 

Our solution is to avoid using local planners as 
much as possible, and instead keep a more global view 
throughout the entire planning process. In the next sec- 
tion, we present Lazy PRM - a path planning algorithm 
tailored for single queries, but which is also useful for 
multiple queries. To make the planner fast, the main 
theme is to minimize the number of collision checks. 

3 LazyPRM 
This section describes a new algorithm for single and 

multiple query path planning. The algorithm is similar 
to the original PRM in [17] in the sense that the aim 
is to find the shortest path in a roadmap generated by 
randomly distributed configurations. In contrast with 
existing PRMs, we do not build a roadmap of feasible 
paths, but rather a roadmap of paths assumed to be 
feasible. The idea is to lazily evaluate the feasibility of 
the roadmap as planning queries are processed. Similar 
ideas about lazy evaluation have been developed con- 
currently but independently in [25] in a planner called 
f izzy PRM. 

In other words, let qinit, qgoal, and a number of uni- 
formly distributed points form nodes in a roadmap, and 
connect by edges each pair of nodes being sufficiently 
close together. Given a procedure that estimates the 
length of a path, we find a shortest feasible path in the 
roadmap by repeatedly searching for a shortest path, 
and then checking whether it is collision-free or not. 
Each time a collision occurs, we remove the correspond- 
ing node or edge from the roadmap, and search for a new 
shortest path. 

This procedure can terminate in either of two ways. 
If there exist feasible paths in the roadmap between 
qinit and qgoal, we will find a shortest one among them. 
Otherwise, if there is no feasible path, we will eventually 
find qinit and qgoal in two disjoint components of the 
roadmap. In the latter case we either report failure or, if 
we still have time, add more nodes to the roadmap by a 
procedure we call node enhancement, and start search- 
ing again. A high-level description of the algorithm is 
given in Figure 1, and the rest of this section explains 
the different steps of the algorithm in more detail. 

3.1 Building the Initial Roadmap 
The first step of the algorithm is to build a roadmap 

6 in C consisting of qinit E 7, qgoal E 7, and Ninit 

nodes distributed uniformly at random. Ninit is a pa- 
rameter determined by the user. We can, of course, use 
heuristics to increase the density of nodes in regions we 
in advance believe are of particular interest, but this is 
in general difficult. 

9init Qgool 

Build initial 
roadmap 

node edge enhancement 
Search for a Lln shortest path 

Remove colliding 

Check path 
for collision 

t 
Collision-free path 

Figure 1: High-level description of Lazy PRM. 

Selecting Neighbors We connect each node in 6 by 
edges to a set of neighbor nodes. An edge represents the 
straight line path in C between two nodes. (In principle, 
any other local technique for connecting nodes could 
be substituted here.) Since it would take far too much 
memory to connect all pairs of nodes, and it is less likely 
that the straight line path between two nodes far apart 
is feasible, it is natural to only consider nodes which are 
sufficiently close together. 

In order to select reasonable neighbors, we need a 
metric pcoll : C x C + [0, 00) such that the distance be- 
tween two configurations under this metric reflects the 
difficulty of connecting them by a collision-free straight 
line path. Then we connect each pair of nodes (q,q')  
such that pcoll(q, q')  5 Rneighb. For any fixed radius 
Rneighb, the number of neighbors of a node is a random 
variable, so depending on the initial number of nodes, 
Nini t ,  we choose Rneighb such that the expected number 
of neighbors equals the parameter Mneighb determined 
by the user. 

In many cases it is harder to make feasible connec- 
tions in certain directions than in others. Consider for 
instance an articulated robot arm; then it is more likely 
that a collision occurs when the base joint is moving one 
unit, than if a joint close to the end-effector is moving 
one unit. With this in mind, we let pcoll be a weighted 
Euclidean metric, 

i= 1 

where d is the dimension of C, { ~ i } $ ~  are positive 
weights, W = diag(wl,. . . , wi), and xT is the trans- 
pose of x. The weights are chosen in proportion to the 
maximum possible distance (Euclidean distance in the 
workspace) traveled by any point on the robot, when 
moving one unit in C along the corresponding axis. This 
metric is easy to use and has been shown to work well 
in our experiments presented in Section 4. 

3.2 
The second step in the algorithm is to find a short- 

est path in 4 between qinit and qgoal. We use the A* 
algorithm [20], and a metric Ppath : c x c + [o,oo) to 
measure the length of a path and the remaining distance 

Searching for a Shortest Path 
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to qgoal. If the search procedure finds a path, we need 
to check it for collision. Otherwise, if no path exists in 
the roadmap, we either report failure, or go to the node 
enhancement step to add more nodes to the roadmap 
and start searching again. The choice is determined by 
the overall time allowed to solve the problem. 

By defining ppath,  we give preference to certain paths 
and reject others, i.e., decide which paths are of high 
quality and which paths are of poor quality. In this 
paper we focus on articulated robots and use the Eu- 
clidean configuration space I1 x . . . x Id, where Ii is the 
range of joint i .  The metric Ppath is a weighted Eu- 
clidean metric, similar to (l), and the weights are equal 
to 5, i = 1, ..., d, where vi is the maximum angular ve- 
locity of joint i .  This tends to give preference to paths 
with short execution time, which in many applications 
is the most interesting response variable. 

3.3 Checking Paths for Collision 
When the A* algorithm has found a shortest path in 

the roadmap between ginit and qgoal, we need to  check 
the nodes and edges along the path for collision. The 
edges are discretised and checked with a certain resolu- 
tion, so our algorithm only requires a collision checker 
for points in C; see [7, 23, 281. 

The overall purpose of the Search, Check, and Re- 
move steps of our algorithm (Figure l), is roughly to 
identify and remove colliding nodes and edges of the 
roadmap until the shortest path between ginit and qgoal 
is feasible. Accordingly, when checking a path for 
coIlision, we are not primarily interested in verifying 
whether an individual node or edge is in T or not, but 
rather to remove colliding nodes and edges as efficiently 
as possible. Since a removal of a node implies all its 
connected edges to  be removed, it seems reasonable to 
first check the feasibility of the nodes along the path, 
before checking the edges. 

Checking Nodes Starting respectively with the first 
and the last node on the examined path and working 
toward the center, we alternately check the nodes along 
the path. As soon as a collision is found, we remove 
the corresponding node, and search for a new shortest 
path. 

The reason for checking the nodes in this order is that 
the probability of having the shortest feasible path via 
a particular node is higher if the node is close to either 
ginit or qgool, so we want to check end-nodes first; see [5] 
for a discussion. 

Checking Edges If all nodes along the path are in F, 
we start checking the edges in a similar fashion; work- 
ing from the outside in. However, to minimize the risk 
of doing unnecessary collision checks, we first check all 
edges along the path with a coarse resolution, and then 
do stepwise refinements until the specified resolution is 
reached. As with the nodes, if a collision is found, we 
remove the corresponding edge, and search for a new 
shortest path. If no collision is found along the path, 
the algorithm terminates and returns the collision-free 
path. 

To make this algorithm efficient, we of course record 
which nodes have been checked for collision, and to 
which resolution each edge has been checked, in order 
to avoid checking any point in C more than once. 

The total number of collision checks depends on the 
resolution with which the edges along the path are 
checked. Again, since pcoll reflects the probability of 
collision, we determine the resolution with respect to 
this metric. Since the resolution should depend on the 
scale of C and the weights defining the metric, we in- 
troduce a parameter Mcoll, specifying the number of 
collision checks required to check the longest possible 
straight line path in C. In other words, assuming that C 
is a &dimensional rectangle and q and q' are two oppo- 
site corners, the resolution - quantified by a step-size 6 
- is related to the length of the diagonal of C according 
to 

3.4 Node Enhancement 
If the search procedure fails, no feasible path between 

ginit and qgoal exists in the roadmap and new nodes are 
necessary in order to find one. In the node enhancement 
step, we generate Nenh new nodes, insert them to  G, and 
select neighbors in the same way as when G was initially 
built. 

We may not only distribute the new nodes uniformly, 
but rather use the information available in the roadmap 
(or what is left of the roadmap), in order to distribute 
them in difficult regions of C. In a method similar to 
the node enhancement in [17], we select a number of 
points in G, called seeds, and then randomly distribute 
a new point close to each of them. 

Although the seeds may help us identify difficult re- 
gions of C, we still want to maintain a smooth distri- 
bution all over C, because the knowledge about C is 
limited and we do not want to  rely too much on the 
selection of seeds. In our algorithm, we let half of the 
enhancement nodes be uniformly distributed, and the 
rest distributed around seeds. This ensures probabilistic 
completeness, i.e., the probability of finding an existing 
path approaches 1 as time goes to infinity; see [5] for a 
proof. 

Selecting Seeds The set of edges which have been 
removed from the roadmap and have at least one end- 
point in 3, will certainly intersect the boundary of T. 
Using the mid-points of these edges as seeds, may help 
us distribute points close to the boundary of F. 

However, if the enhancement step is executed sev- 
eral times, this may cause problems with clustering of 
nodes. Assume that we add a new node q.  This node 
will give rise to a number of edges which in the next en- 
hancement step may increase the probability of adding 
even more nodes close to q. Thus, the distribution of 
new enhancement nodes depends on the preceding en- 
hancement steps, and may eventually cause undesired 
clusters of nodes. To avoid this phenomenon, we only 
use edges whose end-nodes are generated uniformly at 
random when selecting seeds. 
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Figure 2: Example of a seed q in a 2-dimensional con- 
figuration space. If a new point q is distributed accord- 
ing to N d ( q ,  E), with C as in (3), then q is distributed 
within the confidence ellipse (solid line) with probability 
1 - a. The dashed ellipses are contours of the distribu- 
tion function. w1 and w2 are the weights defined in 
(1). 

Distributing New Nodes Around  Seeds When 
distributing a new point q around a seed q, we use 
the multivariate normal distribution. This distribution 
is smooth, easy to use, and allows us to control the 
distribution of q in terms of the metric pcoll. Hence, 
we can stretch the distribution in directions where the 
probabilities of making feasible connections are higher. 

Introducing two parameters a E ( 0 , l )  and X > 0, we 
will show that we can choose a distribution such that 

Pcoll(Q, 7 )  5 ARneighb (2) 
is an event with probability 1 - a; see Figure 2 .  Rneighb 
is the maximum length of an edge defined in Section 
3.1. 

To achieve this property, we define a covariance ma- 
trix C as follows: 

Here W is the same as in (1) and xi(a) is the upper a 
percentile of a X2-distribution with d degrees of freedom 
(dof). Then we let the new point q - N d ( q , C ) ,  i.e., q 
is multivariate normally distributed with d dof, mean 
q, and covariance matrix C. Since C is diagonal, this 
simply means that each component qi, i = 1, .  . . , d, of q 
is normally distributed with mean qi and variance Ci, i .  

To show (2), we use that (q - q ) * C - l ( q  - 7 )  is x2- 
distributed with d dof [16]. Thus, the event 

has probability 1 - a. Using (1) and (3), gives the con- 
fidence ellipsoid in (2). 

If we choose (Y = 0.05, then the parameter X con- 
trols the size of the 95% confidence ellipsoid relative to 
Rneighb (see Figure 2). In our experiments we found 
that X = 1 is a good choice. 

3.5 Multiple Queries 
When the planner has found a collision-free path, it 

terminates and returns the path. Information about 
which nodes and edges have been checked for collision 
is stored in the roadmap, and as long as C remains the 
same, we use the same roadmap when processing sub- 

(Q - ?dTC-'(q - 5 x m  

sequent queries. Thus, we benefit from the information 
already obtained. The new initial and final configura- 
tions are simply added to the roadmap, and the same 
algorithm, except for the initial generation of nodes, is 
run again. 

As several queries are processed, more and more of 
the roadmap will be explored, and the planner will even- 
tually find paths via nodes and edges which have already 
been checked for collision. This makes the planner effi- 
cient for multiple queries. 

Figure 3: The workcell used in our experiments. The 
robot is in its home configuration denoted by A. 

4 Experimental Results 
In this section we present some performance tests of 

Lazy PRM when applied to a 6 dof robot in a realistic 
industrial environment. The planner has been imple- 
mented in C++ as a plug-in module to RobotStudio' 
- a simulation and off-line programming software run- 
ning under Windows NT. The collision checks are han- 
dled internally in RobotStudio. The experiments have 
been run on a PC with a 400 MHz Pentium I1 processor 
and 512 MB RAM. In the tests we let Ninit  = 10000, 
kfneighb = 60, Mcoll = 200, and N e n h  = 500. 

4.1 Path Planning Tasks 
Our test example is a part of a manufacturing process 

in which an ABB 4400 robot is tending press breaking. 
In this particular case, plane sheets of metal are picked 
at a pallet, bent twice by the hydraulic press shown in 
Figure 3, and then placed at another pallet. 

The process is divided into several steps, and our aim 
is to automatically plan the unconstrained paths of the 
robot. We let A to J denote ten different configurations 
shown in Figures 3 and 4. These are used as either 
initial or goal configurations in eight planning tasks, 
denoted for example A + B, where A is the initial 
configuration and B is the goal configuration. 

The scenario is as follows. Starting from the home 
configuration A ,  the robot picks a sheet of metal from 
the pallet at B (task A + B) ,  adjusts the grip at C 
(task B -+ C), and puts the sheet-metal at the press 

RobotStudio is developed by ABB Digital Plant Technologies 
AB, Goteborg, Sweden. 
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- 

Configuration H 

Configuration C 

Configuration I Configuration I 

Configuration D 

Configuration G 

Configuration J 
Figure 4: Configurations B to J used in the experiments. 

D (task C -+ 0). After the breaking, the robot grasps 
the sheet-metal at E ,  moves to the re-gripper F (task 
E + F ) ,  places the sheet-metal, moves to the other side 
G (task F + G), grasps the sheet-metal, and moves 
back to the press H (task G + H ) .  After the second 
breaking, the sheet-metal is grasped at configuration I 
and placed at the pallet J (task I + J ) .  Then the robot 
returns to the home configuration A (task J -+ A) .  

Thus, we have eight paths to plan. Note that during 
this series of steps, C changes several times. As soon 
as we grasp or place a sheet of metal, the collision-free 
part, 7, is changing. Neglecting the small displacement 
of the sheet-metal caused by the centering operation at 
C, the tasks B + C and C + D can be planned in the 
same configuration space. Accordingly, we have seven 
different configuration spaces in which to plan, and we 
have have to build one roadmap in each of them. 

The reported results include the number of collision 
checks, the number of enhancement steps, and the plan- 
ning time; the minimum, average, and maximum values, 
based on 20 consecutive runs for each task, are shown 
in Tables l(a) - l(c). The average number of collision 
checks performed on nodes and edges respectively are 
presented, as well as the average number of collision 
checks performed on the collision-free paths that the 
planner returned. The planning times in Table l(c) are 
divided into graph building (including distance calcula- 

tions and node and edge adding), graph searching, and 
collision checking. 

In the last column of Table 1, the average values of 
the recorded data are summed up, thus indicating the 
average number of collision checks and average planning 
times for the entire press breaking operation. 

In Table l(d), we have for comparison reasons in- 
cluded some results obtained with a PRM-like algo- 
rithm. For each task, we simply checked all nodes and 
edges for collision in one of the roadmaps built by Lazy 
PRM in the initial step (see Figure 1). This corresponds 
to the learning phase without node enhancement in the 
original PRM [17]. Note that even with this long pre- 
processing, there is no guarantee that the planner will 
find a feasible path immediately. In Table l(b),  we see 
that several enhancement steps are needed with Lazy 
PRM, thus also needed here. 

4.2 Interpretation of Results 
We clearly see in Table l(a) that collision check- 

ing represents the vast majority of the planning time 
(SO%), but also that the graph building takes a lot of 
time (18%). Note that for the task C + D, the same 
roadmap is used as for the task B + C, making the 
graph building time significantly shorter. Interestingly, 
the time spent on graph searching is negligible, about 
2%. Even if we carefully select the points to check 
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Task 

I Planning time (sec.) 11 56625 I 31428 1 32299 I 35840 I 51774 I 35097 I 35200 I 56234 11 
Table l(d).  

Table 1: Performance data for Lazy PRM based on 20 consecutive runs for each task. Table l (d)  shows data for 
PRM based on one run for each task. The initial number of nodes, Nznzt, is 10000 in all tests. 

for collision, and frequently search the roadmap for the 
shortest path, the total time spent on that is still very 
short. 

Comparing the average number of collision checks 
performed by Lazy PRM (92 - 682) in Table l(a) to the 
number of collision checks required to explore the entire 
initial roadmap (of order 500 000) in Table l(d), we see 
that Lazy PRM only explores a small fraction, less than 
O. l%,  of the roadmap. We also see that a large percent- 
age, 26%, of the total number of collision checks per- 
formed are actually done on the returned collision-free 
paths, and are therefore inevitable. This is the strength 
of the algorithm; by avoiding local planning and instead 
keeping a more global view, only the essential part of 
the roadmap is explored. As a consequence, very few 
edges - often only the edges along the final path - are 
checked with the finest resolution. This also makes the 
algorithm relatively insensitive to the resolution with 
which the paths are checked. 

Table l(b) reveals another important property of 
Lazy PRM and this is the ability to efficiently conclude 
that node enhancement is needed. Although several en- 
hancement steps are needed in many cases, the number 
of collision checks in Table l (a )  is still very small com- 
pared with the total number of nodes in the roadmap. 
Thus, by only checking a small number of nodes (pos- 
sibly also some edges), the algorithm can conclude that 
no feasible path exists in the roadmap, hence proceed 

to the node enhancement step. 

5 Discussion 
We have described a new probabilistically complete 

path planning algorithm which is particularly useful in 
high dimensional, relatively uncluttered configuration 
spaces, especially when collision checking is an expen- 
sive operation. Single queries are handled very quickly; 
indeed, no preprocessing is required. As subsequent 
queries are processed, the algorithm learns more about 
the configuration space since it automatically retains in- 
formation obtained during previous queries. Thus, the 
planner works efficiently also for multiple queries. 

The aim of Lazy PRM is essentially to minimize the 
number of collision checks while searching the shortest 
feasible path in a roadmap in the context of a PRM 
planner. This is done on the expense of frequent graph 
search. For a complex robot working in a complex 
workspace, like our 6 dof example, collision checking 
is a expensive operation, and careful selection of the 
points being checked for collision reduces the planning 
time considerably. 

Lazy PRM has essentially one parameter that is crit- 
ical for the performance - Ninit, the initial number of 
nodes. Ninzt is strongly correlated to the probability 
of finding a feasible path without using the node en- 
hancement step, and the optimal choice depends on the 
dimension of C, the workspace, the planning task, and 
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the desired quality of the collision-free path. Our fu- 
ture work includes an investigation of the dependence 
between N,,,,t and the planning time in different envi- 
ronments. 

Probabilistic techniques, like Lazy PRM, often give 
very fast planning. However, in Table l(c),  we can see 
that the maximum planning time is approximately twice 
its long as the average planning time. New improved 
enhancement techniques are needed in order to  make 
the algorithms more robust in the sense that the worst 
case performance is improved. This will also be a topic 
of our future research. 
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