
566 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

Probabilistic Roadmaps for Path Planning in
High-Dimensional Configuration Spaces

Lydia E. Kavralu, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars

Abstract- A new motion planning method for robots in static
workspaces is presented. This method proceeds in two phases:
a learning phase and a query phase. In the learning phase, a
probabilistic roadmap is constructed and stored as a graph whose
nodes correspond to collision-free configurations and whose edges
correspond to feasible paths between these configurations. These
paths are computed using a simple and fast local planner. In
the query phase, any given start and goal configurations of the
robot are connected to two nodes of the roadmap; the roadmap is
then searched for a path joining these two nodes. The method is
general and easy to implement. It can be applied to virtually any
type of holonomic robot. It requires selecting certain parameters
(e.g., the duration of the learning phase) whose values depend on
the scene, that is the robot and its workspace. But these values
turn out to be relatively easy to choose. Increased efficiency can
also be achieved by tailoring some components of the method
(e.g., the local planner) to the considered robots. In this paper the
method is applied to planar articulated robots with many degrees
of freedom. Experimental results show that path planning can be
done in a fraction of a second on a contemporary workstation
(E 150 MIPS), after learning for relatively short periods of time
(a few dozen seconds).

I. INTRODUCTION

E present a new planning method which computes
collision-free paths for robots of virtually any type

moving among stationary obstacles (static workspaces). How-
ever, our method is particularly interesting for robots with
many degrees of freedom (dof), say five or more. Indeed, an
increasing number of practical problems involve such robots,
while very few effective motion planning methods, if any, are
available to solve them. The method proceeds in two phases:
a learning phase and a query phase.

In the learning phase a probabilistic roadmap is constructed
by repeatedly generating random free configurations of the
robot and connecting these configurations using some simple,
but very fast motion planner. We call this planner the local
planner. The roadmap thus formed in the free configuration

Manuscript received August 18, 1994; revised May 1, 1995. This work was
supported in part ARPA grant N00014-92-5-1809, ONR grant N00014-94-1-
0721, the Rockwell Foundation, ESPRIT 111 BRA Project 6546 (PROMotion),
and by the Dutch Organization for Scientific Research (NWO). This paper
was recommended by publication by Associate Editor M. Erdmann upon
evaluation of reviewers’ comments.

L. E. Kavraki and J.-C. Latombe are with the Robotics Laboratory,
Department of Computer Science, Stanford University, Stanford, CA 94305
USA (e-mails: { kavraki, latombe@cs.stanford.edu).

P. Svestka and M. H. Overmars are with the Department of Computer
Science, Utrecht University, 3508 TB Utrecht, The Netherlands (e-mails:
{petr, markov} @cs.tuu.ne).

Publisher Item Identifier S 1042-296X(96)03830-X.

space (C-space [37]) of the robot is stored as an undirected
graph R. The configurations are the nodes of R and the paths
computed by the local planner are the edges of R. The learning
phase is concluded by some postprocessing of R to improve
its connectivity.

Following the learning phase, multiple queries can be an-
swered. A query asks for a path between two free configura-
tions of the robot. To process a query the method first attempts
to find a path from the start and goal configurations to two
nodes of the roadmap. Next, a graph search is done to find
a sequence of edges connecting these nodes in the roadmap.
Concatenation of the successive path segments transforms the
sequence found into a feasible path for the robot.

Notice that the learning and the query phases do not have
to be executed sequentially. Instead, they can be interwoven
to adapt the size of the roadmap to difficulties encountered
during the query phase, thus increasing the learning flavor of
our method. For instance, a small roadmap could be first con-
structed; this roadmap could then be augmented (or reduced)
using intermediate data generated while queries are being
processed. This interesting possibility will not be explored in
the paper, though it is particularly useful to conduct trial-and-
error experiments in order to decide how much computation
time should be spent in the learning phase.

To run our planning method the values of several parameters
must first be selected, e.g., the time to be spent in the learning
phase. While these values depend on the scene, i.e., the robot
and the workspace, it has been our experience that good results
are obtained with values spanning rather large intervals. Thus,
it is not difficult to choose one set of satisfactory values for
a given scene or family of scenes, through some preliminary
experiments. Moreover, increased efficiency can be achieved
by tailoring several components of our method, in particular
the local planner, to the considered robots. Overall, we found
the method quite easy to implement and run. Many details
can be engineered in one way or another to fit better the
characteristics of an application domain.

We have demonstrated the power of our method by applying
it to a number of difficult motion planning problems involving
a variety of robots. In this paper we report in detail on
experiments with planar articulated robots (or linkages) with
many dofs moving in constrained workspaces. However, the
method is directly applicable to other kinds of holonomic
robots, such as spatial articulated robots in 3-D workspaces
[29]. Additionally, a version of the method described here
has been successfully applied to nonholonomic car-like robots
[48]. In all cases, experimental results show that the learning

1042-296W96$05.00 0 1996 IEEE

KAVRAKI et al.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES 561

times required for the construction of adequate roadmaps,
i.e., roadmaps that capture well the connectivity of the free
C-space, are short. They range from a few seconds’ for
relatively easy problems to a few minutes for the most difficult
problems we have dealt with. Once a good roadmap has been
constructed, planning queries are processed in a fraction of a
second.

The very small query times make our planning method
particularly suitable for many-dof robots performing several
point-to-point motions in known static workspaces. Examples
of tasks meeting these conditions include maintenance of
cooling pipes in a nuclear plant, point-to-point welding in
car assembly, and cleaning of airplane fuselages. In such
tasks, many dofs are needed to achieve successive desired
configurations of the end-effector while avoiding collisions of
the rest of the arm with the complicated workspace. Explicit
programming of such robots is tedious and time consuming.
An efficient and reliable planner would considerably reduce
the programming burden.

This paper is organized as follows. Section I1 gives an
overview of some previous research and relates our work to
this research. Section 111 describes our motion planning method
in general terms, i.e., without focusing on any specific type of
holonomic robot. Both the learning and the query phases are
discussed here in detail. Next, in Sections IV-VI we apply
our method to planar articulated robots. In Section IV we
describe specific techniques that can be substituted for general
ones in the planner to handle these robots more efficiently
(especially when these have many dofs). In Sections V and
VI we describe a number of experiments and their results; we
also analyze how variations of some parameter values affect
planning results. Section V presents results obtained with
a customized implementation of the method embedding the
specific techniques of Section IV. Section VI discusses other
experimental results obtained with a general implementation
of the method. Section VI1 concludes the paper.

11. RELATION TO PREVIOUS WORK

Path planning for robots in known and static workspaces
has been studied extensively over the last two decades [34].
Recently there has been renewed interest in developing heuris-
tic, but practical path planners. For few-dof robots, many such
planners have been designed and some are extremely fast (e.g.,
[5], [36]). Considerable attention is now directed toward the
creation of efficient heuristic planners for many-dof robots.
Indeed, while such robots are becoming increasingly useful
in industrial applications, complete methods for such robots
have overwhelming complexity. New emerging applications
also motivate that trend, e.g., computer graphic animation,
where motion planning can drastically reduce the amount of
data input by human animators, and molecular biology, where
motion planning can be used to compute motions of molecules
(modeled as spatial linkages with many dofs) docking against
other molecules.

‘All running times reported in this paper have been obtained on a DEC
Alpha workstation, except those given in Section VI which were obtained
with a Silicon Graphics Indigo workstation.

The complexity of complete path planning methods in high-
dimensional configuration spaces has led researchers to seek
heuristic methods that embed weaker notions of complete-
ness (e.g., probabilistic completeness) and/or can be partially
adapted to specific problem domains in order to boost perfor-
mance in those domains.

In recent years, some of the most impressive results were
obtained using potential field methods. Such methods are
attractive, since the heuristic function guiding the search for a
path, the potential field, can easily be adapted to the specific
problem to be solved, in particular the obstacles and the goal
configuration. The main disadvantage of these planners is
the presence of local minima in the potential fields. These
minima may be difficult to escape. Local minima-free potential
functions (also called navigation functions) have been defined
in [6], [31], [46]. But these functions are expensive to compute
in high-dimensional configuration spaces and have not been
used for many-dof robots.

One of the first successful potential field planners for robots
with many dof is described in [17]. This planner has been
used to compute paths of an 8-dof manipulator among vertical
pipes in a nuclear plant, with interactive human assistance
to escape local minima. In [18] the same authors present a
learning scheme to avoid falling into the local minima of
the potential field. During the learning phase, probabilities
of moving between neighboring configurations without falling
into a local minimum are accumulated in an rn array, where
n is the number of dofs and T is the number of intervals
discretizing the range of each dof. During the planning phase,
these probabilities are used as another heuristic function (in
addition to the potential function) to guide the robot away
from the local minima. This learning scheme was applied with
some success to robots with up to 6 dofs. However, the size
of the rn array becomes impractical when n grows larger.

Techniques for both computing potential functions and
escaping local minima in high-dimensional C-spaces are pre-
sented in [5], [6]. The Randomized Path Planner (RPP) de-
scribed in [6] escapes local minima by executing random
walks. It has been successfully experimented on difficult
problems involving robots with 3 to 31 dofs. It has also
been used in practice with good results to plan motions
for performing riveting operations on plane fuselages [20],
and to plan disassembly operations for the maintenance of
aircraft engines [l l] . Recently, RPP has been embedded in
a larger ‘ ‘manipulation planner” to automatically animate
scenes involving human figures modeled with 62 dofs [32].
However, several examples have also been identified where
RPP behaves poorly [lo], [50]. In these examples, RPP falls
into local minima whose basins of attraction are mostly
bounded by obstacles, with only narrow passages to escape.
The probability that any random walk finds its way through
such a passage is almost zero. In fact, once one knows how
RPP computes the potential field, it is not too difficult to
create such examples. One way to prevent this from happening
is to let W P randomly use several potential functions, but
this solution is rather time consuming. Our roadmap planner
deals efficiently with problems that are difficult for RPP, as
discussed in Section V.

568 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

Other interesting lines of work include the method in
[3] which is based on a variational dynamic programming
approach and can tackle problems of similar complexity to the
problems solved by RPP. In [21], [22] a sequential framework
with backtracking is proposed for serial manipulators, and in
[14] a motion planner with performance proportional to task
difficulty is developed for arbitrary many-dof robots operating
in cluttered environments. The planner in [33] finds paths
for six-dof manipulators using heuristic search techniques that
limit the part of the C-space that is explored, and the planner
in [I] utilizes genetic algorithms to help search for a path in
high-dimensional C-spaces. Parallel processing techniques are
investigated in [lo], [38].

The planning method presented in this paper differs sig-
nificantly from the methods referenced above, which are for
the most part based on potential field or cell decomposition
approaches. Instead, our method applies a roadmap approach
[34], that is, it constructs a network of paths in free C-
space. Previous roadmap methods include the visibility graph
[39], Voronoi diagram [41], and silhouette [8] methods. All
these three methods compute in a single shot a roadmap that
completely represents the connectivity of the free C-space. The
visibility graph and Voronoi diagram methods are limited to
low-dimensional C-spaces. The silhouette method applies to
C-spaces of any dimension, but its complexity makes it little
practical.

Roadmaps have also been built and used incrementally in
several other planners. The planner in [9] incrementally builds
the skeleton of the C-space using a local opportunistic strategy.
This work has inspired the approaches in [15], [45] which
construct retracts of the free C-space using sensor data and
thus do not assume that the (static) environment in which the
robot moves is knowri a priori. The approach in [12] builds
a sparse network of robot subgoals with the use of a simple
and a computationally expensive planner. This network can
also include information to accommodate local changes in the
environment [2], [131.

Our method emphasizes efficiency and is primarily de-
veloped for robots with many dofs which move in static
environments. We are not aware of other roadmap techniques
that have been effectively applied to high-dimensional C-
spaces. The approach we discuss in this paper uses proba-
bilistic techniques to incrementally build a roadmap in the
free C-space of the robot. It can produce a roadmap in
any amount of allocated time. If the time spent on the
construction of the roadmap is short, the roadmap may not
adequately represent the connectivity of the free C-space.
Actually, in our planner, the roadmap is never guaranteed
to fully represent free C-space connectivity, though if we let
our techniques run long enough it eventually will (but we
don’t know how long is enough). However, while building
the roadmap, our method heuristically identifies “difficult’ ’
regions in free C-space and generates additional configurations
in those regions to increase network connectivity. Therefore,
the final distribution of configurations in the roadmap is
not uniform across free C-space; it is denser in regions
considered difficult by the heuristic function. This feature helps
to construct roadmaps of a reasonable size that represent free

C-space connectivity well. In particular, it allows our imple-
mented planner to efficiently solve tricky problems requiring
proper choices among several narrow passages, i.e., the kind
of problems that potential field techniques like RPP tackle
poorly.

Note also that, like most practical methods for many-dof
robots (one exception is the method in [17]), RE’P is a one-
shot method, i.e., it does not precompute any knowledge of
the free C-space that is transferred from one run to another.
Consequently, on problems that both RPP and our method
solve well, the latter is usually much faster, once it has
constructed a good roadmap. But, if the learning time is
included in the duration of the path planning process (which
should be the case whenever planning is done only once in
a given workspace), there are many problems for which RPP
is faster.

The authors of this paper are from two different teams and
the work presented here builds upon previous work they did
separately. A single-shot random planner was described in [42]
and was subsequently expanded into a learning approach in
[43]. In these papers the emphasis was on robots with a rather
low number of dofs. Similar techniques have been applied
both to car-like robots that can move forward and backward
(symmetrical nonholonomic robots) and car-like robots that
can only move forward [47], [48]. In [49] these results are
extended to simultaneous motion planning for multiple car-
like robots. Independently, a preprocessing scheme similar to
the learning phase was introduced in [28]. This scheme also
builds a probabilistic roadmap in free C-space, but focuses
on the case of many-dof robots. The need to expand the
roadmap in “difficult’ ’ regions of C-space was noted there and
addressed with simple techniques. Better expansion techniques
were introduced in [28], [29]. That approach is described in
detail in [25] and a theoretical analysis bounding the time
spent by that planner is given in [4], [26], and [30]. The
present paper combines the ideas of the experimental work
in these previous papers. Since it only presents a limited
subset of the experimental results we have obtained with
our method, the interested reader is encouraged to look into
our previous papers for additional results, in particular re-
sults involving other types of robots. Though computation
times reported in these papers were obtained with different
versions of our method, their orders of magnitude remain
meaningful.

Finally, it should be noted that another planner which bares
similarities with our approach, but was developed indepen-
dently of our two teams, is proposed in [23].

111. THE GENERAL METHOD
We now describe our path planning method in general terms

for a holonomic robot without focusing on any specific type
of robot. During the learning phase a data structure called
the roadmap is constructed in a probabilistic way for a given
scene. The roadmap is an undirected graph R = (N , E) .
The nodes in N are a set of configurations of the robot
appropriately chosen over the free C-space. The edges in E
correspond to (simple) paths; an edge (a , b) corresponds to

569 KAVRAKI et al.: PROBABILISTIC ROADMAPS FOR PATH PLANNING 1N HIGH-DIMENSIONAL CONFIGURATION SPACES

a feasible path connecting the configurations a and b. These
paths, which we refer to as local paths, are computed by an
extremely fast, though not very powerful planner, called the
local planner. The local paths are not explicitly stored in the
roadmap, since recomputing them is very cheap. This saves
considerable space, but requires the local planner to succeed
and fail deterministically. We assume here that the learning
phase is entirely performed before any path planning query.
As we already noted, however, the learning and query phases
can also be interwoven.

In the query phase, the roadmap is used to solve individual
path planning problems in the input scene. Given a start
configuration s and a goal configuration g, the method first
tries to connect s and g to some two nodes s” and ij in N . If
successful, it then searches R for a sequence of edges in E
connecting s” to ij. Finally, it transforms this sequence into a
feasible path for the robot by recomputing the corresponding
local paths and concatenating them.

In the following, we let C denote the robot’s C-space and
Cf its free subset (also called the free C-space).

A. The Learning Phase

The learning phase consists of two successive steps, which
we refer to as the construction and the expansion step. The
objective of the former is to obtain a reasonably connected
graph, with enough vertices to provide a rather uniform cov-
ering of free C-space and to make sure that most “difficult”
regions in this space contain at least a few nodes. The second
step is aimed at further improving the connectivity of this
graph. It selects nodes of R which, according to some heuristic
evaluator, lie in difficult regions of C-space and expands the
graph by generating additional nodes in their neighborhoods.
Hence, the covering of Cf by the final roadmap is not uniform,
but depends on the local intricacy of the C-space.

I) The Construction Step: Initially the graph R = (N , E)
is empty. Then, repeatedly, a random free configuration is
generated and added to N . For every such new node c, we
select a number of nodes from the current N and try to connect
c to each of them using the local planner. Whenever this
planner succeeds to compute a feasible path between c and
a selected node n, the edge (c , n) is added to E. The actual
local path is not memorized.

The selection of the nodes to which we try to connect c
is done as follows. First, a set N, of candidate neighbors is
chosen from N . This set is made of nodes within a certain
distance of e, for some metric D. Then we pick nodes from N,
in order of increasing distance from e. We try to connect c to
each of the selected nodes if it is not already graph-connected
to c. Hence, no cycles can be created and the resulting graph
is a forest, i.e., a collection of trees. Since a query would
never succeed thanks to an edge that is part of a cycle, it is
indeed sensible not to consume time and space computing and
storing such an edge. However, in some cases, the absence
of cycles may lead the query phase to construct unnecessary
long paths. This drawback can easily be eliminated by applying
smoothing techniques to either the roadmap during the learning

phase, or the particular paths constructed in the query phase,
or both. Even if the roadmap contained cycles, such smoothing
operations would eventually produce better paths.

Whenever the local planner succeeds in finding a path
between two nodes, the connected components of R are
dynamically updated. Therefore, no graph search is required
for deciding whether a node picked from N, is already
connected to c, or not.

To make our presentation more precise, let:
A be a symmetrical function Cf x Cf -+ (0, l}, which
returns whether the local planner can compute a path
between the two configurations given as arguments;
D be a function C x C + R+ U {0}, called the distance
function, defining a pseudo-metric in C. (We only require
that D be symmetrical and nondegenerate.)

The construction step algorithm can be outlined as follows:

N + 0
E + 0
loop

c + a randomly chosen free

N,+ a set of candidate neighbors
configuration

of c chosen from N
N +- N U { e }
for all n E N,, in order of
increasing D (c , n) do
if isame-connected-component(c, n)

AA(c, n) then
E +- E U { (c , 4)
update R’s connected
components

A number of components of algorithm above are still
unspecified. In particular, we need to define how random
configurations are created in (4), propose a local planner for
(8), clarify the notion of a candidate neighbor in (5), and
choose the distance function D used in (7).

a) Creation of random conJigurations: The nodes of R
should constitute a rather uniform random sampling of Cf .
Every such configuration is obtained by drawing each of its
coordinates from the interval of values of the corresponding
dof using the uniform probability distribution over this inter-
val. The obtained configuration is checked for collision. If it
is collision-free, it is added to N ; otherwise, it is discarded.

Collision checking requires testing if any part of the robot
intersects an obstacle and if two distinct bodies of the robot
intersect each other. It can be done using a variety of existing
general techniques. In the general implementation considered
in Section VI the test is performed analytically using optimized
routines from the PLAGE0 library [191. Alternatively, we
could use an iterative collision checker, like the one described
in [43], which automatically generates successive approxi-
mations of the objects involved in the collision test. In 2-D
workspaces, we may use a faster, but more specific collision
checker (see Section IV).

570 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

b) The local planner: Our best experimental results have
been obtained when the local planner is both deterministic
and very fast. These requirements are not strict, however. We
discuss briefly the tradeoffs involved in the choice of the local
planner.

If a nondeterministic planner was used, local paths would
have to be stored in the roadmap. The roadmap would require
more space, but this would not be a major problem.

Concerning how fast the local planner should be, there is
clearly a tradeoff between the time spent in each individual
call of this planner and the number of calls. If a powerful
local planner was used, it would often succeed in finding a
path when one exists. Hence, relatively few nodes would be
required to build a roadmap capturing the connectivity of the
free C-space sufficiently well to reliably answer path planning
queries. Such a local planner would probably be rather slow,
but this could be somewhat compensated by the small number
of calls needed. On the other hand, a very fast planner is likely
to be less successful. It will require more configurations to be
included in the roadmap; so, it will be called more often, but
each call will be cheaper.

The choice of the local planner also affects the query phase.
The purpose of having a learning phase is to make it possible
to answer path planning queries quasi-instantaneously. It is
thus important to be able to connect any given start and
goal configurations to the roadmap, or to detect that no such
connection is possible, very quickly. This requires that the
roadmap be dense enough, so that it always contains a few
nodes (at least one) to which it is easy to connect each of the
start and goal configurations. It thus seems preferable to use
a very fast local planner, even if it is not too powerful, and
build large roadmaps with configurations widely distributed
over the free C-space. In addition, if the local planner is very
fast, we can use the same planner to connect the start and
goal configurations to the roadmap at query time. Local paths
needed not be memorized since recomputing them at query
time is inexpensive. We actually tried several local planners,
some very fast, some slower but more powerful, and our
experimental observations clearly confirmed this conclusion
(e.g., see [40], [47]).

A quite general such local planner, which is applicable to all
holonomic robots, connects any two given configurations by
a straight line segment in configuration space and checks this
line segment for collision and joint limits (if any). Verifying
that a straight line segment remains within the joint limits is
straightforward. On the other hand, collision checking can be
done as follows [6]. First, discretize the line segment (more
generally, any path generated by the local planner) into a
number of configurations c l , . . . , e,, such that for each pair
of consecutive configurations (e 2 , c,+1) no point on the robot,
when positioned at configuration e,, lies further than some eps
away from its position when the robot is at configuration c,+l
(eps is a predetermined positive constant).* Then, for each
configuration c2, test whether the robot, when positioned at
c2 and "grown" by eps, is collision-free, using the collision
checker discussed above. If none of the m configurations yield

parameters of the planning method
'Throughout this paper symbols in teletyped characters are used to denote

collision, conclude that the path is collision-free. Since eps is
constant, the computation of the robot bodies grown by eps
is done only once. In the following we will refer to this local
planner as the general local planner.

c) The node neighbors: Another important choice to be
made is that of the set Ne, the candidate neighbors of e. The
local planner will be called to connect c with nodes in Ne and
the cumulative cost of these invocations dominates learning
time.

We avoid calls of the local planner that are likely to
return failure by submitting only pairs of configurations whose
relative distance (according to the distance function 0) is
smaller than some constant threshold maxdi s t. Thus, we
define:

N, = { E E NID(c, 2) 5 maxdist}.

Additionally, according to the algorithm outline given above,
we try to connect c to all nodes in N, in order of increasing
distance from e; but we skip those nodes which are in the
same connected component as c at the time the connection is
to be tried. By considering elements of Ne in this order we
expect to maximize the chances of quickly connecting c to
other configurations and, consequently, reduce the number of
calls to the local planner (since every successful connection
results in merging two connected components into one).

In our experiments we found it useful to bound the size of
the set Ne by some constant maxneighbors (typically on
the order of 30). This additional criterion guarantees that, in
the worst case, the running time of each iteration of the main
loop of the construction step algorithm is independent of the
current size of the roadmap R. Thus, the number of calls to
the local method is linear in the size of the graph it constructs.

d} The distancefunction: The function D is used to both
construct and sort the set N, of candidate neighbors of
each new node e. It should be defined so that, for any pair
(c , n) of configurations, D (c , n) reflects the chance that the
local planner will fail to compute a feasible path between
these configurations. One possibility is to define D(c ,n) as
a measure (aredvolume) of the workspace region swept by
the robot when it moves along the path computed by the
local planner between c and n in the absence of obstacles.
Thus, each local planner would automatically induce its own
specific distance function. Since exact computation of swept
areadvolumes tends to be rather time-consuming, a rough but
inexpensive measure of the swept-region gives better practical
results. For example, when the general local planner described
above is used to connect c and n, D(c , n) may be defined as
follows:

(1) D(c ,n) = max IIz(n) - z(c)ll
 robot

where z denotes a point on the robot, .(e) is the position
of x in the workspace when the robot is at configuration c,
and IIz(n) -z(c) l l is the Euclidean distance between .(e) and
4 n) .

KAVRAKI ef al.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES 57 1

2) The Expansion Step: If the number of nodes generated
during the construction step is large enough, the set N gives
a fairly uniform covering of the free C-space. In easy scenes
R is then well connected. But in more constrained ones where
free C-space is actually connected, R often consists of a few
large components and several small ones. It therefore does not
effectively capture the connectivity of C,f.

The expansion step is intended to improve the connectivity
of the graph R generated by the construction step. Typically, if
the graph is disconnected in a place where Cf is not, this place
corresponds to some narrow, hence difficult region of the free
C-space. The idea underlying the expansion step is to select a
number of nodes from N which are likely to lie in such regions
and to “expand” them. By expanding a configuration c, we
mean selecting a new free configuration in the neighborhood
of c, adding this configuration to N , and trying to connect it
to other nodes of N in the same way as in the construction
step. So, the expansion step increases the density of roadmap
configurations in regions of Cf that are believed to be difficult.
Since the “gaps” between components of the graph R are
typically located in these regions, the connectivity of R is
likely to increase.

We propose the following probabilistic scheme for the
expansion step. With each node c in N we associate a positive
weight w(c) that is a heuristic measure of the “difficulty”
of the region around e. Thus, w(c) is large whenever c is
considered to be in a difficult region. We normalize w so that
all weights together (for all nodes in N) add up to one. Then,
repeatedly, we select a node c from N with probability:

Pr(c is selected) = w(c)

and we expand this node.
There are several ways to define the heuristic weight ~ (c) .

One possibility is to count the number of nodes of N lying
within some predefined distance of e. If this number is
low, the obstacle region probably occupies a large subset of
e’s neighborhood. This suggests that w(c) could be defined
inversely proportional to the number of nodes within some
distance of e. Another possibility is to look at the distance
d, from c to the nearest connected component not containing
e. If this distance is small, then c lies in a region where two
components failed to connect, which indicates that this region
might be a difficult one (it may also be actually obstructed).
This idea leads to defining W (C) inversely proportional to
d,. Alternatively, rather than using the structure of R to
identify difficult regions, we could define ~ (c) according to
the behavior of the local planner. For example, if the local
planner often failed to connect c to other nodes, this is also
an indication that c lies in a difficult region. Which particular
heuristic function should be used depends to some extent on
the input scene. A more detailed discussion on expansion
techniques can be found in [25]. For the framework of this
paper, the following function has produced good results:

At the end of the construction step, for each node e,
compute the failure ratio r f (c) defined by:

where n(c) is total number of times the local planner tried
to connect c to another node and f (c) is the number of
times it failed. (Note: Whenever the local planner fails to
connect two nodes c and n, this failure is counted in both
the failure ratios of c and n. In this way, the configurations
that are included in N at the very beginning of the
construction step get meaningful failure ratios.)
At the beginning of the expansion step, for every node c
in N , compute w(c) proportional to the failure ratio, but
scaled appropriately so that all weights add up to one, i.e.:

To expand a node e, we compute a short random-bounce
walk starting from c. For holonomic robots, a random-bounce
walk consists of repeatedly picking at random a direction
of motion in C-space and moving in this direction until
an obstacle is hit. When a collision occurs, a new random
direction is chosen. And so on. The final configuration n
reached by the random-bounce walk and the edge (c , n)
are inserted into R. Moreover, the path computed between
c and n is explicitly stored, since it was generated by a
nondeterministic technique. We also record the fact that n
belongs to the same connected component as c. Then we try to
connect n to the other connected components of the network
in the same way as in the construction step. The expansion
step thus never creates new components in R. At worst, it
fails to reduce the number of components.

The weights w(c) are computed only once at the beginning
of the expansion step and are not modified when new nodes
are added to R. Once the expansion step is over, all remaining
small components of R, if any, are discarded. Here, a com-
ponent is considered small if its number of nodes is less than
some mincomponent percent (typically 0.01%) of the total
number of nodes in N . The graph R after discarding the small
components represents the roadmap that will be used during
the query phase. It may contain one or several components.

Let TL be the time allocated to the learning phase. Clearly,
the range of adequate values for TL depends on the scene, and
these value should be determined experimentally for each new
scene. If TC is the time spent on the construction step and TE is
the time spent on the expansion step, we have found that a 2: 1
ratio between these times, i.e, TC = 2 T ~ / 3 and TE = TI,/&
gives good results over a large range of problems.

B. The Query Phase
During the query phase, paths are to be found between

arbitrary input start and goal configurations, using the roadmap
constructed in the learning phase. Assume for the moment that
the free C-space is connected and that the roadmap consists of
a single connected component R. Given a start configuration
s and goal configuration g, we try to connect s and g to some
two nodes of R, respectively SX and j , with feasible paths P,
and Pg. If this fails, the query fails. Otherwise, we compute
a path P in R connecting SX to ij. A feasible path from s to 9
is eventually constructed by concatenating P,, , the recomputed
path corresponding to P, and Pg reversed. If one wishes, this

512 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

path may be improved by running a smoothing algorithm on it.
Smoothing techniques that can be used here include the one
in [35], which selects random segments of the global path
and tries to shortcut them by using the local planner, and
the method in [7], which iteratively performs local geometric
operations (i.e., cutting off triangle corners).

The main question is how to compute the paths P, and Pg.
The queries should preferably terminate quasi-instantaneously,
so no expensive algorithm is desired here. Our strategy for
connecting s to R is to consider the nodes in R in order
of increasing distance from s (according to D) and try to
connect s to each of them with the local planner, until one
connection succeeds. We ignore nodes located further than
maxdi s t away from s, because the chance of success of the
local planner is very low. If all connection attempts fail, we
perform one or more random-bounce walks, as described in III-
A-2. But, instead of adding the node at the end of each such
random-bounce walk to the roadmap, we now try to connect
it to R with the local planner. As soon as s is successfully
connected to R, we apply the same procedure to connect g
to R.

The reconstruction of a robot path from the sequence of
nodes in P reduces to the concatenation of the paths that
take the robot between adjacent nodes in P. Some of these
paths have been produced by random-bounce walks during
the learning phase and are stored in the relevant edges of
R. Paths that correspond to connections that have been found
during learning by the local planner are recomputed. The local
planner is deterministic and it will produce the same path
every time it is called with the same input configurations.
Collisions need not be checked along the recomputed local
paths if the local planner has the property that it aborts when
a collision is detected: all intermediate configurations along
the path have been checked for collision when the local path
was first computed. An example of a planner having the above
property is the straight-line planner of Section 111-A-1. If the
local planner performs a certain (detenninistic) action when a
collision is detected, then collisions need to be checked along
the recomputed path so that the same action can be repeated
just after a collision is detected.

In general, however, the roadmap may consist of several
connected components R,, i = 1 , 2 , . . . , p . This is usually the
case when the free C-space is itself not connected. It may also
happen when free C-space is connected, for instance if the
roadmap is not dense enough. If the roadmap contains several
components, we try to connect both s and g to two nodes
in the same component, starting with the component closest
to s and g. If the connection of s and g to some component
R, succeeds, a path is constructed as in the single-component
case. The method returns failure if it cannot connect both the
start and goal configuration to the same roadmap component.
Since in most examples the roadmap consists of rather few
components, failure is rapidly detected.

If path planning queries fail frequently, this is an indication
that the roadmap may not adequately capture the connectivity
of the free C-space. Hence, more time should be spent in the
learning phase, i.e., TL should be increased. However, it is
not necessary to construct a new roadmap from the beginning.

J4

J I

Fig. 1. A planar articulated robot.

Since the learning phase is incremental, we can simply extend
the current roadmap by resuming the construction step algo-
rithm and/or the expansion step algorithm, starting with the
current roadmap graph, thus interweaving the learning and the
query phases.

Iv . APPLICATION TO PLANAR ARTICULATED ROBOTS

This section describes the application of our planning
method to planar articulated robots with fixed or free bases.
We present techniques specific to these robots that can be
substituted for the more general techniques in the roadmap
method in order to increase its efficiency. The purpose of this
presentation is to illustrate the ease with which the general
method for holonomic robots can be engineered to better suit
the needs of a particular application. In Section V we will
discuss experiments with an implementation of the method
that embeds the specific techniques described below, while
in Section VI we will present experimental results with a
general implementation of the method to demonstrate that
the method remains quite powerful, even without specific
components. In the rest of the paper we will refer to these
two implementations as the customized implementation and
the general implementation, respectively.

To make the following presentation shorter, we only con-
sider the following type of planar articulated robots with an
arbitrary number of revolute joints. Fig. 1 illustrates such a
robot in which the links are line segments. The links, which
may actually be any polygons, are denoted by L1 through
L, (in the figure, q = 5). Points 51 through 5, designate
revolute joints. Point J1 denotes the base of the robot; it may,
or may not, be fixed relative to the workspace. The point Jq+l
(JG in the figure) is called the endpoint of the robot. Each
revolute joint J, (2 = 1, . . . , q) has defined certain internal
joint limits, denoted by low, and up,, with low, < up,,
which constrain the range of the possible orientations that
L, can take relative to L,-1. If the robot’s base is free, the
translation of J1 is bounded along the x and y axes of the
Cartesian coordinate system embedded in the workspace by
low, and up,, and low, and upv, respectively. We represent
the C-space of such a q-link planar articulated robot by
{ [lowl, up11 x . . . x [low,, up,]}, if its base is fixed, and by

[low,, up,] ,} if its base is free. A self-collision configuration
is any configuration where two nonadjacent links of the robot
intersect each other. We do not allow such configurations.
Thus, the free C-space is constrained by the obstacles and
by the set of self-collision configurations. We assume that the
joint limits prevent self-collisions between any two adjacent
links.

We now discuss specific techniques for local path planning,
distance computation, and collision checking that apply well to

{ [lowr, UPZI x [low,, upy] x IO, 27rI x [lowz, UP21 x . ’ . x

~

KAVRAKI et ul.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES

~

573

the family of robots defined above. The same techniques can
also be applied, possibly with minor adaptations, to other types
of articulated robots, e.g., robots with prismatic joints andor
with multiple kinematic chains [28] and articulated robots in
3-D workspace [29].

1) Local Path Planning: Let a and b be any two given
configurations that we wish to connect with the local planner.
Our local planner constructs a path as follows. It translates
at constant relative velocity all the joints with an odd index,
i.e., all J2*z+l’s, along the straight lines in the workspace that
connect their positions at configuration U to their positions
at configuration b. During this motion the planner adjusts the
position of every other joint J2*, using the straightforward
inverse kinematic equations of this point relative to J2*,-1

and 52*%+1. Thus, the J ~ * % ’ s “follow” the motion led by the
J2*P+l’~. If q is even, the position of Jq is not determined by
the above rule; it is computed by rotating joint J4 at constant
revolute velocity relative to the linear velocity of point Jq.
Recall from Subsection 111-B-1 that a local path is discretized
into a sequence of configurations for collision checking. When
our specific technique is used, we must also verify that the
coordinates of each such configuration are within joint limits.
Thus, the motion is aborted if either a collision occurs, or
a joint moves beyond one of its limits, or some Jz*, cannot
follow the motion led by the J2*r+1’~. We have observed that
in cases when the above motion does not manage to connect
configurations a and b, it nevertheless brings the robot to a
configuration b’ very close to b. It then pays off to try to
connect b‘ and b with a straight line in C-space and only after
this fails to declare failure of the local planner to connect a
and b. We will refer to the above planner as the specific local
planner.

The workspace region swept out by the robot along a local
path computed by the specific local planner between two con-
figurations a and b is typically smaller than for the path joining
a and b by a straight line segment in configuration space,
which is computed by the general local planner described in
Subsection 111-A-1. Hence, the local paths generated by the
specific planner are more likely to be collision-free than those
generated by the general planner. Also, collision checking is
less expensive since, for a given eps, the discretization of
the local path yields less configurations. On the other hand,
the specific planner, though still very fast, is not as fast
as the general planner. Indeed, it requires inverse kinematic
computation to determine configuration coordinates along the
path. Nevertheless, on examples involving many-dof planar
articulated robots, better results are obtained when the specific
local planner is used.

2) Distance computation: Let J i (a) , i = 1, . . . q+1 denote
the position of the point Ji in the workspace, when the robot
is at configuration a. We define the distance function D by:

¶+I
(a , b) E c x c - D(a ,b) = 1 I I J i (U) - Ji(b)1I2

i=l

where II.Ji(x) - Ji(y)II is the Euclidean distance between

&(a) and Ji(b) . This function is a better approximation of
the area swept by the robot along the local paths computed by
the specific local planner than the general distance function
defined by (1).

3) Collision Checking: The 2-D workspace allows for a
very fast collision checking technique. In this technique each
link of the robot is regarded as a distinct robot with two dofs
of translation and one dof of rotation. A bitmap representing
the 3-D configuration space of this robot is precomputed,
with the “0”’s describing the free subset of this space and
the “1”’s describing the subset where the link collides with
an obstacle. When a configuration is checked for collision,
the 3-D configuration of each link is computed and tested
against its C-space bitmap, which is a constant-time operation.
Different 3-D bitmaps must be computed for links of different
shape. However, if larger links can be modeled as two (or
more) smaller links, then we need not create one bitmap for
each link of the robot. For example, when all the links are
line segments (as in Fig. l), a single bitmap can be computed,
for the shortest link. Then collision checking for a long link
requires multiple access to the bitmap of the short link. The
computation of any 3-D bitmaps needed for collision checking
is performed only once, prior to the learning phase.

The 3-D bitmap for one link can be computed as a collection
of 2-D bitmaps, each corresponding to a fixed orientation of
the link. If the link and the obstacles are modeled as collections
of possibly overlapping convex polygons, the construction of
a 2-D bitmap can be done as follows [36]. First use the
algorithm in [37] to produce the vertices of the obstacles
in the link’s C-space. (This algorithm takes linear time in
the number of vertices of the objects.) Then draw and fill
the obstacles into the 2-D bitmap. (On many workstations,
this second operation can be done very quickly using raster-
scan hardware originally designed to efficiently display filled
polygons on graphic terminals.) Each 2-D bitmap may also
be computed using the FTT-based method described in [24],
whose complexity depends only on the size of the bitmap.
This FFT method is advantageous when the obstacles are
originally input as bitmaps. In any case, experiments show
that computing a 3-D bitmap with a size on the order of
128 x 128 x 128 takes a few seconds. Clearly, this technique
is not yet practical for 3-D workspaces, since it requires the
generation of 6-D bitmaps.

There are many other ways of adjusting our general path
planning method to a specific robot. However, too much
specific tuning may not always be desirable: at some point the
gain in efficiency becomes smaller than the burden of making
the specific changes and keeping track of them.

V. RESULTS WITH CUSTOMIZED IMPLEMENTATION
In this section we present the performance of our method

when this is implemented with the local planner, the collision
checker, and the distance function described in Section IV.
To be precise, while collision checking with obstacles is
done using the bitmap technique, self-collisions are detected
analytically.

574 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

Fig. 2. Scene 1, with 7-revolute-joint fixed-base robot.

The planner is implemented in C and for the experiments
reported here we used a DEC Alpha workstation. This machine
is rated at 126.0 SPECfp92 and 74.3 SPECint92. We have
tested our planner on a number of 2-D scenes. Each scene
contains polygonal obstacles and a planar articulated robot
whose links are line segments (see Figs. 2 and 6). By no
means does this reflect a limitation of the method. The specific
local planner and collision checker of Section IV also apply to
robots made of polygonal links (though several bitmaps may
then be required). The parameters of our planner are:

Tc, the time to be spent in the construction step;
TE, the time to be spent in the expansion step;
maxdi s t, the maximal distance between nodes that the
local planner may try to connect;
eps, the constant used to discretize local paths before
collision checking;
maxneighbors, the maximum number of calls of the
local planner per node;
T R B - ~ ~ ~ ~ ~ ~ , the duration of the computation of a
random-bounce walk performed during the expansion step
(learning phase);
NRB-query, the maximum number of random-bounce
walks allowed for connecting the start or goal configura-
tion to the roadmap (query phase);
T R B - ~ ~ ~ ~ ~ , the duration of the computation of each of
the raidom-bounce walks during the query phase.

(Notice that the last two parameters determine an upper
bound on the time spent in answering a query.)

For each scene, we first input a set of configurations
by hand, which we refer to as the test set. For a fixed
TC and TE, we then independently create many different
roadmaps starting with different values of the random value
generator. In the examples here we only keep the largest
connected component of the roadmap; other components, if
any, are simply discarded. We then try to connect the same
configuration in the test set to each of these roadmaps and
we record the percentage of times our planner succeeds to
make a connection in a prespecified amount of time (2.5 s).
The estimated success rates may be used to calculate the
success rates of queries that involve any two configurations
in the test set. By performing a large number of experiments,
we believe that we present a realistic characterization of the
performance of our planner. In particular, we ensure that

the results do not reflect just a lucky run, or a bad one.
We independently repeat the same experiment for different
TC and TE. For the other parameters described above, we
choose fixed values throughout the experiments based on some
preliminary experimental results. Notice that it is important
to choose the configurations in the test set manually. For
obvious reasons, a random generation similar to the one used
during the learning phase tends to produce configurations
that are easily connected to the roadmap. Instead, proceeding
manually allows us to select “interesting” configurations,
for example configurations where the robot lies in narrow
passages between workspace obstacles. It is unlikely that the
random generator of the learning phase produced many such
configurations.

We present results obtained with two representative scenes
shown in Figs. 2 (fixed-base robot) and 6 (free-base robot).

1) Fixed-Base Articulated Robot: Fig. 2 shows eight con-
figurations forming the test set of an articulated robot in a
scene with several narrow gates. The robot has a fixed base,
denoted by a square, and 7 revolute degrees of freedom.

The table in Fig. 3 reports the success rates of connecting
the configurations in the test set to roadmaps obtained with
different learning times. The learning time, TL, is shown in
column 1. It is broken into TC and TE in columns 2 and 3 , with
TE = Tc/2 . The values of the other parameters of the planner
are: maxdist = 0.4, eps = 0.01 (for the interpretation of
these two values note that the workspace is described as a
unit square), maxneighbors = 30, T R B - ~ ~ ~ ~ ~ ~ = 0.01
Sec, TRB-query = 0.05 sec, NRB-query = 45.

For every row of the table in Fig. 3 we independently
generated 30 roadmaps, each with the indicated learning time.
The roadmaps generated for different rows were also computed
independently, that is, no roadmap in some row was reused to
construct a larger one in following row.

Column 4 in Fig. 3 gives the average number of collision
checks performed for the roadmap construction for different
learning times. This number can be regarded as an estimate of
the computational complexity of the planner. In the context
of the our approach, it must be interpreted with caution.
Collision checks are done not only along robot paths, as in
most planners, but also when trying to guess random free
configurations of the robot (see Subsection 111-B-1). Most

KAVRAKI et al.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES

TL TC TE Coll. Avg.
(sec) (sec) (sec) checks nodes
20.1 13.1 7.0 621943 1062

515

C1 I C,
100.0 I 36.7

c 2
13.3
50.0
80.0
90.0
90.0
96.7
100.0

c 3 c4 c5 c6
36.7 10.0 40.0 93.3
46.7 46.7 46.7 90.0
80.0 80.0 80.0 100.0
96.7 90.0 96.7 100.0
100.0 90.0 100.0 100.0
100.0 96.7 100.0 100.0
100.0 100.0 100.0 100.0

Coll.
checks

620238
905312

1178494
1421185
1661916
1917744
2128273

Size of
components c1 c3 c, c~ c6 c7 ca
878, 116, 62 62 F F F F F F F
1644, 165 78 51 F 7584 F 40 59 F
2411 53 1148 22 3432 33 44 225 2270
2881, 63, 10 13 20 20 3877 80 38 20 2328
3302, 35, 33 57 45 16 22 14 160 51 46
3869, 52, 10 94 30 19 4764 21 42 74 63
4245, 49 32 25 16 32 12 89 48 43

Coll. checks for connection t o roadmap

_c_3
56.7
70.0
86.7
96.7
100.0
100.0
100.0 __

*
100.0
100.0
100.0
100.0
100.0
100.0
100.0 -

100.0 100.0
96.7 100.0

100.0 100.0

Fig. 3. Results with customized planner for scene of Fig. 2 (with expansion).

Tc I TR I Coll.
(sec) (sec) checks *
50.2 1291216
60.2 1502089

50.2
60.2

2877 100.0
3372 100.0
3877 100.0
4295 100.0

Fig. 4. Results with customized planner for scene of Fig. 2 (no expansion).

20.3 13.3

-
TE

7.0
(sec)

10.5
14.1
17.5
21.1
24.6
28.1

Fig. 5. Connecting configurations to the roadmap.

of these randomly guessed configurations are illegal because
of collisions with the obstacles or self-intersections. On the
average, this is quickly detected and the collision checker
aborts almost instantaneously. Column 5 in Fig. 3 reports the
average number of nodes, over the 30 runs, in the largest
roadmap component at the end of the learning phase. The
largest connected component of each roadmap is used for
query processing. Columns 6-13 are labeled with the eight
configurations C1, . . . Cg of Fig. 2. The columns report the
success rate when trying to connect, in less that 2.5 s,
the corresponding configuration to each of the 30 produced
roadmaps. One trial (as defined by the parameters maxdist,
maxneighbors, TRB-query, and NRB-query) was made
per roadmap.

The table in Fig. 3 shows that after a learning time of
60 s or more (rows 5, 6, and 7), all eight configurations of
Fig. 2 are successfully connected to the generated roadmaps
with very few exceptions. These are all located in row 6,
where configurations C,, C, and C, were not connected to
the roadmaps, once out of the 30 trials of that row. Such
exceptions are to be expected with a randomized technique.

Fig. 4 shows the percentage of successful connections to
roadmaps created without expansion. The corresponding rows
of the tables in Figs. 3 and 4 report results obtained with
the same learning time. We again generated 30 independent

roadmaps in each row in Fig. 4. We show the average number
of collision checks required to create each roadmap (column
4), the average number of nodes in the largest component of
these roadmaps (column 5) , and the success rate when trying
to connect C1 . . . ? C, to them. In general, the percentages of
successful connections are lower in this table. The difference
shows more clearly when the learning time is small. If we are
interested in obtaining a solution to a path planning problem
as fast as possible, it is thus better to spend part of the
time allocated to the learning phase on the expansion step
rather than spend it completely on the construction step. As
mentioned above, the ratio T ~ / T ~ = 2 gives good results
over a wide range of problems.

Let us finally note that connecting Cl,. . . ? CS to the
roadmaps is very fast, which in turn means that finding a
path between any two of the above configurations is also fast.
In Fig. 5 we repeat the experiment of Fig. 3, but now we
create only one roadmap in each row of the table. We report
in columns 6 to 13 the actual number of collision checks
needed to connect Cl, . . . , (78 to the roadmaps produced after
learning times of 20, 30, 40, 50, 60, 70 and 80 s. Again,
we try to connect the configurations in the test set only
to the largest component of these roadmaps, and we report
failure (indicated by ‘F’) if we do not succeed to do so
within the allocated time (2.5 s). In most cases, relatively

516

1037739
1361134
1674144
1987967
2336917
2632712

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

924
1603
2460
2999
3695
4229

Fig. 6. Scene 2, with 5-revolute-joint free-base robot (7-dof).

30.1
40.1
50.2
60.3
70.1
80.4

20.1 13.0 7.1
19.6 10.5
26.0 14.1
32.6 17.6
39.2 21.1
45.6 24.5
52.3 28.1

Coll. I Avg.
checks nodes 7i”

Success Rate (%)
c1

96.7
100.0
100.0
100.0
100.0
100.0
100.0

c 4

6.7
16.7
56.7
93.3
93.3
100.0
100.0

56.7 96.7
93.3 100.0
93.3 100.0
100.0 100.0
100.0 100.0

c7
6.7

16.7
56.7
96.7
93.3
100.0
100.0

ca
10.0
16.7
56.7
93.3
93.3
100.0
100.0

~

Fig. 7. Results with customized planner for scene of Fig. 6 (with expansion).

few collision checks are needed for successful connection to
the roadmap: a few tens to a few hundreds. Infrequently, a
couple of thousands of collision checks are performed. This
happens when one or more random-bounce walks are executed
before the configuration is connected to the roadmap with the
local planner. In any case, for the machine used for our
experiments, the above numbers translate to connection times
of a fraction of second to a few seconds. In the tahle of Fig. 5
we report in column 4 the size of all roadmap components
with more than 10 nodes. It is easy to see that after a learning
time of 40 s, there is a clear difference in the size of the
major component and the smaller ones. The latter contain
only a small percentage of the total nodes and their presence
does not affect path planning. That is why in our analysis
we considered only the largest component of the roadmaps
produced by learning.

Path planning will succeed between any two configurations
that can be connected to the roadmaps produced. A simple
breadth-first search algorithm can produce a sequence of edges
that connect two nodes of the roadmap in a very short time,
typically a small fraction of second in the machine used.
Reconstructing the path is equally fast if no collisions need
to be performed along recomputed local paths (see Subsection
111-B). In our implementation where collision checks are
performed when recovering a local path, we spend a few
tens of thousands of collision checks for connecting between
different nodes in the roadmap. It is interesting to contrast
the number of collision checks needed for learning and for
query processing: collision checks for learning are 2 to 3
orders of magnitude larger than collision checks needed for
answering queries. This is also true for any configurations we
tried in the scene of Fig. 2 and not only the eight configurations

considered here. RPP, one of the few planners that can tackle
the path planning problems arising from the configurations in
Fig. 2, takes a few tens of minutes on the average to solve
these queries. Thus, even if learning time is included in the
duration of the path planning process, our roadmap technique
is still faster than RPP for this example. However, the above
scene is very difficult for potential field methods. In simpler
cases (see Section VI) W P is equally fast, if not faster than
our roadmap method.

2) Free-Base Articulated Robot: We have performed the
same experiments for a free-base articulated robot (see Fig. 6).
The robot has a total of 7 dof: 2 for its free base and 5 for its
revolute joints. The parameter values of our planner are the
same as in the previous experiments.

Figs. 7 and 8 show the results obtained with and without ex-
pansion, respectively. 30 roadmaps were created independently
for each row in the above tables. Again, in almost all cases, the
percentage of successful connections to the roadmaps is greater
with expansion than without (for the same total learning time).
After a learning phase of 70 seconds, all configurations can
be connected to the roadmaps produced. The actual number
of collision checks for connecting C1, . . . , Ca of Fig. 6 to
the roadmaps are again in the order of a few tens to a few
thousands. This makes path planning between any two of the
configurations shown in Fig. 6 very fast: usually a fraction of
a second in the machine used.

VI. RESULTS WITH GENERAL IMPLEMENTATION

The customized implementation used in the previous section
solves efficiently path planning problems involving planar
articulated robots. In this section we demonstrate that the

KAVRAKI et ul.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES

Coll.
checks

686580
987852

1265245
1534808
1778678
2058469
2277226

511

Avg. Success Rate (%)
nodes C1 C, C, C, C, C, C, C,

527 96.7 3.3 3.3 3.3 3.3 86.7 3.3 3.3
1005 100.0 30.0 30.0 26.7 30.0 96.7 30.0 30.0
1437 100.0 40.0 40.0 40.0 43.3 100.0 43.3 40.0
2238 100.0 80.0 80.0 76.7 76.7 100.0 76.7 76.7
2709 100.0 80.0 80.0 80.0 80.0 100.0 83.3 80.0
3384 100.0 90.0 90.0 90.0 90.0 100.0 90.0 90.0
4002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TE
(sec)
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Fig. 8. Results with customized planner for scene of Fig. 6 (no expansion).

Fig. 9. Scene 1, with 4-dof robot

general implementation of the planner still gives very good
results for a variety of examples.

The planner considered here is essentially an implemen-
tation of the method described in Section 111. Unlike the
customized implementation, this implementation does not use
any specific techniques for local path planning, collision
checking, or distance computation. Hence, as described in
Section 111, the local path constructed between any two config-
urations is the straight line segment joining them in C-space;
the distance function D is the one defined by Eqn. (1); and
collision checking is done analytically, using routines from
the PLAGE0 library [191. The planner was implemented on a
Silicon Graphics Indigo2 workstation rated at 96.5 SPECfp92
and 90.4 SPECint92. This machine is comparable to the one
we used for the results in the previous section. We report here
on experimentation conducted with articulated robots with 4
or 5 joints connected by polygonal links. This general planner
is directly applicable to robots with polyhedral links moving
in 3-D workspaces.

We present results obtained with two representative exam-
ples. In scene 1 in Fig. 9, we have a 4-dof robot with three
revolute joints and one prismatic joint (indicated by the double
arrow). Scene 2 in Fig. 10, is a slightly more difficult one, with
a 5-revolute-joint robot and narrow areas in the workspace.
For most existing planners, motion planning problems in both
these scenes would be challenging ones. RPP is able to deal
with these examples efficiently. Still, the cases treated here
are considerably easier than in the scenes of Section V, due to
the relatively low number of dofs of the two robots, and the
presence of only few tight areas in the workspaces.

The experiments conducted with these two test scenes are
similar to those in Section V. For each scene, we consider

Fig. 10. Scene 2, with 5-dof robot.

only two “difficult” configurations s and g. Then, for a fixed
construction time TC and expansion time TE (hence, a fixed
learning time TL), we independently create 30 roadmaps. For
each of these roadmaps we only consider its main connected
component and we test whether the query with configurations
(s , g) succeeds within 2.5 s. In other words, we test whether
both s and g can be quickly connected to the main connected
component of the roadmap with the method described in
Section 111-B. We repeat this experiment for a number of
different construction times TC and expansion times TE, with
TE = Tc/2. For each such pair of times we report the success
rate in answering the query (s, 9) .

The other parameters have the following fixed val-
ues, which are almost the same as in the experimen-
tation reported in the previous section: maxdist =
0.5, eps = 0.01, maxneighbors = 30, T R B - ~ ~ ~ ~ ~ ~ =
0.01, T R B - ~ ~ ~ ~ ~ = 0.05 sec, and NRB-query = 45. Again,
for the interpretation of the values for maxdist and eps,
note that we scaled the two scenes in a way that the workspace
obstacles just fit into the unit square.

In both Figs. 9 and 10 the start configuration s is shown in
dark grey, and the goal configuration g in white. In each figure,
several robot configurations along a path solving the query
are displayed using various grey levels. The results of the
experiments described above are given in Fig. 11. The average
number of collision checks required to build the roadmaps is
given in column 4 for scene 1 and in column 6 for scene 2. The
query in scene 1 is solved in all 30 cases after having learned
for 7.5 s. Learning for 5 s though suffices to successfully
answer the query in more than 90% of the cases. In scene 2
we observe a similar behavior, although the required learning
times are slightly higher.

These results show that the general implementation is able to
efficiently solve rather complicated planning problems. How-

578

TL
(sec)
2.5
5

7.5
10

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

TC TE Coll. checks Success ra te (%) C O L checks Success ra te (%)
(sec) (sec) Learning: Scene 1 Scene 1 Learning: Scene 2 Scene 2
1.67 0.83 10078 53.3 9558 50
3.33 1.67 19756 93.3 18746 87

5 2.5 29525 100 27607 97
6.67 3.33 38607 100 36392 1 nn

Fig. 11. Results with general planner for scenes of Fig. 9 and 10

Fig. 12. Results with general planner for scene of Fig. 2 (with expansion).

ever, when applied to problems involving more dofs, like those
in the previous section, the learning times required to build
good roadmaps are much longer. For example, experiments
indicated that about 25 minutes of learning are required in
order to obtain roadmaps that capture well the free C-space
connectivity of the scene shown in Fig. 2. Fig. 12 reports
some experimental results obtained over many independently
constructed roadmaps, for different learning times. As in
Section V, we estimate the average number of collision checks
needed during learning and the percentage of times that our
planner succeeds in connecting some of the configurations of
Fig. 2 to the roadmap, over many independently constructed
roadmaps, for different learning times. In such difficult cases,
clearly, customization is desirable, if not necessary.

VII. CONCLUSION
We have described a' two-phase method to solve robot

motion planning problems in static workspaces. In the learning
phase, the method constructs a probabilistic roadmap as a
collection of configurations randomly selected across the free
C-space. In the query phase, it uses this roadmap to quickly
process path planning queries, each specified by a pair of con-
figurations. The learning phase includes a heuristic evaluator
to identify difficult regions in the free C-space and increase the
density of the roadmap in those regions. This feature enables
us to construct roadmaps that capture well the connectivity of
the free C-space.

The method is general and can be applied to virtually any
type of holonomic robot. Furthermore, it can be easily cus-
tomized to run more efficiently on some family of problems.
Customization consists of replacing components of the general
method, such as the local planner, by more specialized ones
fitting better the characteristics of the considered scenes. In this
paper, we have described techniques to customize the method
to planar articulated robots, and presented experimental results
with both a general and a customized implementation of
the method. The customized implementation can solve very
difficult path planning queries involving many-dof robots
in a fraction of a second, after a learning time of a few
dozen seconds. The general implementation solves the same

problems in several minutes, but it is still very efficient in less
difficult problems.

In [25], [28], [29], and [43], prior versions of the method
have been applied to a great variety of holonomic robots
including planar and spatial articulated robots with revolute,
prismatic, and/or spherical joints, fixed or free base, and
single or multiple kinematic chains. In [47]-[49] a variation
of the method (essentially one with a different general local
planner) was also run successfully on examples involving
nonholonomic car-like robots.

Experimental results show that our method can efficiently
solve certain kinds of problems which are beyond the capa-
bilities of other existing methods. For example, for planar
articulated robots with many dofs, the customized imple-
mentation of Section V is much more consistent than the
Randomized Path Planner (RPP) of [6]. Indeed, the latter can
be very fast on some difficult problems, but it may also take
prohibitive time on some others. We have not observed such
disparity with our roadmap method. Moreover, after sufficient
learning (usually on the order of a few dozen seconds), the
probabilistic roadmap method answers queries considerably
faster than RF'P. However, when the learning time is included
in the planning time, RPP is faster on many problems, since
it does not perform any substantial precomputation.

An important question is how our method scales up when
we consider scenes with more complicated geometry, since
the cost of collision checking is much higher. First, let
us note that in 2-D workspaces the effect is likely to be
limited if the bitmap collision-checking technique of Section
IV is used. Indeed, once bitmaps have been precomputed,
collision checking is a constant-time operation; and the cost of
computing bitmaps using the FFT-based technique described
in [24] only depends on the resolution (i.e., the size) of
these bitmaps. However, more complicated geometry may
require increasing the bitmap resolution in order to represent
geometric details with desired accuracy. With 3-D workspaces
the situation is completely different, since we can no longer
use the bitmap technique. Our experiments in 3-D workspaces
reported in [29] show that the higher cost of collision checking
increases the duration of the learning phase. It affects less the
query phase, since less collision checks are performed there.
The results in [29] also show that the duration of the learning
phase remains quite reasonable (on the order of minutes), but
they were obtained with simple 3-D geometry (for example,
the robot links were line segments). For more complicated
geometries, the use of an iterative collision checker, like the
one in [44], will be advantageous. The collision checker in
[44] considers successive approximations of the objects and
its running time, on the average, does not depend much on the

KAVRAKI et al.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES 579

geometric complexity of the scenes. RPP is another planner
that heavily relies on collision checking. For long we ran
RPP on geometrically simple problems; but, recently, we used
it to automatically animate graphic 3-D scenes of complex
geometry [32] using the above iterative collision checker. We
observed no dramatic slowdown of the W P planner.

A challenging goal would now be to extend the method to
dynamic scenes. One first question is: how should a roadmap
computed for a given workspace be updated if a few obstacles
are removed or added? The work in 121, [lZ] discusses how
to deal with changes in the environment in the context of
the hybrid planner presented in [12]. We hope that similar
techniques could apply to our planner. Being able to plan
when obstacles move will be very useful because then we
could apply our method to scenes subject to small incremental
changes. Such changes occur in many manufacturing (e.g.,
assembly) cells; while most of the geometry of such a cell
is permanent and stationary, a few objects (e.g., fixtures)
are added or removed between any two consecutive manu-
facturing operations. Similar incremental changes also occur
in automatic graphic animation. A second question is: how
should the learning and query phase be modified if some
obstacles are moving along known trajectories? An answer to
this question might consist of applying our roadmap method in

[I41 P. C. Chen and Y. K. Hwang, “SANDROS: A motion planner with
performance proportional to task difficulty,” Proc. IEEE Int. Con$
Robotics and Automation, Nice, France, pp. 2346-2353, 1992.

[I51 H. Choset and J. Burdick, “Sensor based planning and nonsmooth
analysis,” Proc. IEEE Int. Con$ Robotics and Automation, San Diego,
CA, pp. 3034-3041, 1994.

[I61 M. Erdmann and T. Lozano-PCrez, “On multiple moving objects,” Proc.
IEEE lnt. Con$ Robotics and Automation, pp. 1152-1 159, 1986.

[17] B. Faverjon and P. Tournassoud, “A local approach for path planning of
manipulators with a high number of degrees of freedom,” Proc. IEEE
Int. Con$ Robotics andAutomation, Raleigh, NC, pp. 1152-1 159, 1987.

[I81 B. Faverjon and P. Tournassoud, “A practical approach to motion
planning for manipulators with many degrees of freedom,” Robotics
Research 5, H. Minra and S. Arimoto, Eds. Cambridge, MA: MIT
Press, p. 65-73, 1990.

[I91 G.-J. Giezeman,”PlaGeo-A library for planar geometry” Tech. Rep.,
Dept. Computer Science, Utrecht Univ., Utrecht, The Netherlands, 1993.

[20] L. Graux, P. Millies, P.L. Kociemba, and B. Langlois, “Integration
of a path generation algorithm into off-line programming of airbus
panels,” Aerospace Automated Fastening Con$ and Exp., SAE Tech.
Paper 922404, Oct. 1992.

[21] K. Gupta and Z. Gou, “Sequential search with backtracking,” Proc. IEEE
h t . Con$ Robotics andAutomation, Nice, France, pp. 2328-2333, 1992.

[22] K. Gupta and X. Zhu, “Practical motion planning for many degrees of
freedom: A novel approach within sequential framework,” Proc. IEEE
Int. Con$ Robotics and Automation, San Diego, CA, pp. 2038-2043,
1994.

[23] Th. Horsch, F. Schwarz, and H. Tolle, “Motion planning for many
degrees of freedom - random reflections at C-space obstacles,” Proc.
IEEE Int. Conf Robotics and Automation, pp. 3318-3323, San Diego,
CA, 1994.

[24] L. E. Kavraki, “Computation of configuration-space obstacles using the
the configuration x time space of the robot [161. The roadmap

as a directed graph, since local
paths between any two nodes must monotonically progress
along the time axis, with possibly additional constraints on
their slope and curvature to reflect bounds on the robot’s
velocity and acceleration.

fast fourier transform,“ IEEE Trans. Robot. Automat., vol. 11, no. 3 , pp.
408413, June 1995.

[25] -, Random networks in conjigurution space for just path planning,
Ph.D. Dissertation, Tech. Rep. STAN-CS-95.1535, Dept. Computer
Science, Stanford Univ., Stanford, CA, Jan. 1995.

[26] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” Proc. IEEE Int. Con$
Robotics and Automution, Minneapolis, MN, , pp. 3020-3025, 1996.

[27] L. E. Kavraki and J.-C. Latombe, Randomized preprocessing of con-
jiguration space for fast path planning, Tech. Rep. STAN-CS-93-1490,
Dept. Computer Science, Stanford Univ., Stanford, CA, Sept. 1993.

then have to be

REFERENCES

[I] J. M. Ahuactzin, E.-G. Talbi, P. Bessiere, and E. Mazer, “Using
genetic algorithms for robot motion planning,’’ 10th Europ. Con$ ArtiJic.
Intelligence, London, pp. 671-675, 1992.

[2] M. Barbehenn, P.C. Chen, and S. Hutchinson, “An efficient hybrid
planner in changing environments,” Proc. IEEE Int. Con$ Robotics and
Automation, San Diego, CA, pp. 2755-2760, May 1994.

131 J. Barraquand and P. Ferbach, “Path planning through variational
dynamic programming,” Proc. IEEE Int. Con$ Robotics and Automation,
San Diego, CA, pp. 1839-1846, May 1994.

[4] B. Barraquand, L. E. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani,
and P. Raghavan, “A random sampling scheme for robot path planning,”
Robotics Research, G. Giralt and G. Hirzinger, Eds. Amsterdam: North
Holland, 1996, to appear.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Trans. Syst., Man,
Cybern., vol. 22, no. 2, pp. 224-241, 1992.

[6] J. Barraquand and J.-C. Latombe, “Robot motion planning: a distributed
representation approach,” Inc. J. Robot. Res., vol. 10, pp. 628-649, 1991.

[7] S. Berchtold and B. Glavina, “A scalable optimizer for automatically
generated manipulator motions,” Proc. IEEE/RSJ/GI Int. Conj Intelli-
gent Robots and Systems, Miinchen, Germany, pp. 1796-1802, 1994.

[8] J. F. Canny, The Complexity of Robot Motion Pluizning. Cambridge,
MA: MIT Press, 1988.

[9] J. F. Canny and M. C. Lin, “An opportunistic global path planner,”
Proc. IEEE Int. Con$ Robotics and Automation, Cincinnati, OH, pp.

[IO] D. Chalou and M. Gini, “Parallel robot motion planning,” Proc. IEEE
Int. Con$ Robotics and Automation, Atlanta, GA, pp. 24-51, 1993.

[I l l H. Chang and T.-Y. Li, “Assembly maintainability study with motion
planning,” Proc. IEEE Int. Con$ Robotics and Automation, Nayoga,

1554-1559, 1990.

Japan, 1995.
[I21 P. C. Chen, “Improving path planning with learning,” Proc. Machine

Learning Confi, pp. 55-61, 1992.
[13] -, “Adaptive path planning in changing environments, ” Rep.

SAND92-2744, Sandia National Laboratories, 1993.

[28] __, “Randomized preprocessing of configuration space for fast path
planning,” Proc. IEEE Int. Con$ Robotics and Automation, San Diego,

[29] -, “Randomized preprocessing of configuration space for path
planning: Articulated robots,” Proc. IEEE/RSJ/GI Int. Con$ Intelligenl
Robots and Systems, Germany, pp. 17641772, 1994.

[30] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Random-
ized query processing in robot path planning,” Proc. 27th Ann. ACM
Symp. on Theovy of Computing (STOC), Las Vegas, NV, pp. 353-362,
May 1995.

[31] D. E. Koditschek, “Exact robot navigation by means of potential
functions: some topological considerations,” Proc. IEEE Int. Con$
Robot. Automat., Raleigh, NC, pp. 1-6, 1987.

[32] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe, “Planning motions
with intentions,” Proc. SIGGRAPH’94, pp. 395-408, 1994.

[33] K. Kondo, “Motion planning with six degrees of freedom by multistrate-
gic bidirectional heuristic free-space enumeration,” IEEE Trans. Robot.
Automat., vol. 7, no. 3, pp. 267-277, 1991.

[34] J.-C. Latombe, Robot Motion Planning. Boston: Kluwer, 1991.
[35] J.-P. Laumond, M. Taix, and P. Jacobs, “A motion planner for car-like

robots based on a globaVlocal approach,” Proc. IEEE Internat. Workshop
Intell. Robot Syst., pp. 765-773. 1990.

[36] J . Lengyel, M. Reichert, B. R. Donald, and P. Greenherg, “Real-time
robot motion planning using rasterizing computer graphics hardware,”
Proc. SIGGRAPH’90, Dallas, TX, pp. 327-335, 1990.

[37] T. Lozano-Perez, “Spatial planning: a configuration space approach,”
IEEE Trans. Computers, vol. 32, pp. 108-120, 1983.

[38] T. Lozano-Perez and P. O’Donnel, “Parallel robot motion planning,”
Proc. IEEE Int. Con$ Rob. and Automation, Sacramento, CA, pp.

[39] T. Lozano-PCrez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Comm. ACM, vol.
22, no. 10, pp. 560-570, 1979.

[40] J . Mastwijk, Motion planning using potential .field methods, Master’s
Thesis, Dept. Computer Science, Utrecht Univ., Utrecht, The Nether-

CA, pp. 2138-2145, 1994.

1000-1007, 199 1.

580 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 4, AUGUST 1996

lands, Aug. 1992.
1411 C. O’Dunlaing and C.K. Yap, “A retraction method for planning the
~~

motion of a d&,” J. Algorithms, vol. 6, pp. 104111, 1982.
1421 M. Overmars, A random approach to motion planning, Tech. Rep.

RUU-(2-92-32, Dept. Computer Science, Utrecht Univ., Utrecht, The
Netherlands, Oct. 1992;

[43] M. Overmars and P. Svestka, “A probabilistic learning approach to
motion planning,” in Algorithmic Foundations of Robotics, K. Goldberg
et al., Eds.

[44] S. Quinlan, “Efficient distance computation between nonconvex ob-
jects,” Proc. IEEE Int. Con$ Robotics und Automation, San Diego, CA.
pp. 3324-3330, 1994.

[45] E. Rimon and J. F. Canny, “Construction of C-space roadmaps from
local sensory data, What should the sensors look for?’ Proc. IEEE Int.
Con$ Robotics and Automation, San Diego, CA, pp. 117-123, 1994.

[46] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Trans. Robot. Automat., vol. 8, pp. 501-518,
1992.

[47] P. Svestka, A probabilistic approach to motion planning for car-like
robois, Tech. Rep. RUU-CS-93-18, Dept. Computer Science, Utrecht
Univ., Utrecht, The Netherlands, Apr. 1993.

[48] P. Svestka and M. Overmars, Motion plunningfor car-like robots using
U probabilistic learning approach, to appear in Int. J . Robot. Research.,
1995.

[49] ~, “Coordinated motion planning for multiple car-like robots using
probabilistic roadmaps,” Proc. IEEE Int. Con$ Robotics and Automation.
Nagoya, Japan, pp. 1631-1636, 1995.

[SO] X. Zhu and K. Gupta, “On local minima and random search in robot
motion planning,” Unpublished Tech. Report, Simon Fraser Univ.,
Burnaby, British Columbia, Canada, 1993.

Wellesley, MA: A. K. Peters, pp. 19-37, 1995.

of probabilistic techni
dimension.

Lydia E. Kavraki received the B.S. degree in
computer science from the University of Crete,
Greece, in 1989, and the M.S. and Ph.D. degrees in
computer science from Stanford University in 1992
and 1995, respectively.

She is currently a Research Associate at the
Robotics Laboratory, Stanford University. Her re-
search interests include motion planning, assembly
planning, and geometric computing, with applica-
tions in the area of molecular biology (phamaceu-
tical drug design). Her work emphasizes the use

ques for solving complex geometric problems in high

Petr Svestka was born in Prague, Czechoslov&a,
on October 17, 1968 He received the degree in
computer science from the University of Utrecht,
Utrecht, The Netherlands, in 1993 He is currently
working toward the Ph.D. degree, also at Utrecht
University His research activities include proba-
bilistic path planning for various types of robots,
as well as multi-robot path planning.

Jean-Claude Latombe received the B.S. and M.S
degrees in electrical engineering, and the Ph D
degree in computer science from the National Poly-
technic Institute of Grenoble, Grenoble, France, in
1969, 1972, and 1977, respectively.

He is currently a Professor of Computer Science,
Stanford University, Stanford, CA, where he is also
the director of the Computer Science Robotics Labo-
ratory From 1980 to 1984, he was a faculty member
at Ecole Nationale Superieure d’lnformatique et
de Mathematiques Appliquees de Grenoble (EN-

SIMAG) From 1984 to 1987, he was the executive president of Industry and
Technology for Machine Intelligence (ITMI), a company he cofounded in 1982
for commercializing robot systems and expert systems His current research
interests lie mainly In geometric computing and motion planning, and in their
applications to manufacturing, mobile robot navigation, concurrent design,
graphic animation, rationale drug design, and computer-assisted surgery

Mark H. Overmars received the Ph.D. degree in
computer science in 1983 from Utrecht University,
Utrecht, The Netherlands.

He is currently a full professor in Computer
Science at Utrecht University. His main research
interests include Computational geometry and its
application in areas like computer graphics and
robotics. In robotics, his work concentrates on exact
and heuristic methods for motion planning and on
algorithmic issues in robotic manipulation.

