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Probabilistic Roadmaps for Path Planning in 
High-Dimensional Configuration Spaces 

Lydia E. Kavralu, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars 

Abstract- A new motion planning method for robots in static 
workspaces is presented. This method proceeds in two phases: 
a learning phase and a query phase. In the learning phase, a 
probabilistic roadmap is constructed and stored as a graph whose 
nodes correspond to collision-free configurations and whose edges 
correspond to feasible paths between these configurations. These 
paths are computed using a simple and fast local planner. In 
the query phase, any given start and goal configurations of the 
robot are connected to two nodes of the roadmap; the roadmap is 
then searched for a path joining these two nodes. The method is 
general and easy to implement. It can be applied to virtually any 
type of holonomic robot. It requires selecting certain parameters 
(e.g., the duration of the learning phase) whose values depend on 
the scene, that is the robot and its workspace. But these values 
turn out to be relatively easy to choose. Increased efficiency can 
also be achieved by tailoring some components of the method 
(e.g., the local planner) to the considered robots. In this paper the 
method is applied to planar articulated robots with many degrees 
of freedom. Experimental results show that path planning can be 
done in a fraction of a second on a contemporary workstation 
(E 150 MIPS), after learning for relatively short periods of time 
(a few dozen seconds). 

I. INTRODUCTION 

E present a new planning method which computes 
collision-free paths for robots of virtually any type 

moving among stationary obstacles (static workspaces). How- 
ever, our method is particularly interesting for robots with 
many degrees of freedom (dof), say five or more. Indeed, an 
increasing number of practical problems involve such robots, 
while very few effective motion planning methods, if any, are 
available to solve them. The method proceeds in two phases: 
a learning phase and a query phase. 

In the learning phase a probabilistic roadmap is constructed 
by repeatedly generating random free configurations of the 
robot and connecting these configurations using some simple, 
but very fast motion planner. We call this planner the local 
planner. The roadmap thus formed in the free configuration 
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space (C-space [37]) of the robot is stored as an undirected 
graph R. The configurations are the nodes of R and the paths 
computed by the local planner are the edges of R. The learning 
phase is concluded by some postprocessing of R to improve 
its connectivity. 

Following the learning phase, multiple queries can be an- 
swered. A query asks for a path between two free configura- 
tions of the robot. To process a query the method first attempts 
to find a path from the start and goal configurations to two 
nodes of the roadmap. Next, a graph search is done to find 
a sequence of edges connecting these nodes in the roadmap. 
Concatenation of the successive path segments transforms the 
sequence found into a feasible path for the robot. 

Notice that the learning and the query phases do not have 
to be executed sequentially. Instead, they can be interwoven 
to adapt the size of the roadmap to difficulties encountered 
during the query phase, thus increasing the learning flavor of 
our method. For instance, a small roadmap could be first con- 
structed; this roadmap could then be augmented (or reduced) 
using intermediate data generated while queries are being 
processed. This interesting possibility will not be explored in 
the paper, though it is particularly useful to conduct trial-and- 
error experiments in order to decide how much computation 
time should be spent in the learning phase. 

To run our planning method the values of several parameters 
must first be selected, e.g., the time to be spent in the learning 
phase. While these values depend on the scene, i.e., the robot 
and the workspace, it has been our experience that good results 
are obtained with values spanning rather large intervals. Thus, 
it is not difficult to choose one set of satisfactory values for 
a given scene or family of scenes, through some preliminary 
experiments. Moreover, increased efficiency can be achieved 
by tailoring several components of our method, in particular 
the local planner, to the considered robots. Overall, we found 
the method quite easy to implement and run. Many details 
can be engineered in one way or another to fit better the 
characteristics of an application domain. 

We have demonstrated the power of our method by applying 
it to a number of difficult motion planning problems involving 
a variety of robots. In this paper we report in detail on 
experiments with planar articulated robots (or linkages) with 
many dofs moving in constrained workspaces. However, the 
method is directly applicable to other kinds of holonomic 
robots, such as spatial articulated robots in 3-D workspaces 
[29]. Additionally, a version of the method described here 
has been successfully applied to nonholonomic car-like robots 
[48]. In all cases, experimental results show that the learning 
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times required for the construction of adequate roadmaps, 
i.e., roadmaps that capture well the connectivity of the free 
C-space, are short. They range from a few seconds’ for 
relatively easy problems to a few minutes for the most difficult 
problems we have dealt with. Once a good roadmap has been 
constructed, planning queries are processed in a fraction of a 
second. 

The very small query times make our planning method 
particularly suitable for many-dof robots performing several 
point-to-point motions in known static workspaces. Examples 
of tasks meeting these conditions include maintenance of 
cooling pipes in a nuclear plant, point-to-point welding in 
car assembly, and cleaning of airplane fuselages. In such 
tasks, many dofs are needed to achieve successive desired 
configurations of the end-effector while avoiding collisions of 
the rest of the arm with the complicated workspace. Explicit 
programming of such robots is tedious and time consuming. 
An efficient and reliable planner would considerably reduce 
the programming burden. 

This paper is organized as follows. Section I1 gives an 
overview of some previous research and relates our work to 
this research. Section 111 describes our motion planning method 
in general terms, i.e., without focusing on any specific type of 
holonomic robot. Both the learning and the query phases are 
discussed here in detail. Next, in Sections IV-VI we apply 
our method to planar articulated robots. In Section IV we 
describe specific techniques that can be substituted for general 
ones in the planner to handle these robots more efficiently 
(especially when these have many dofs). In Sections V and 
VI we describe a number of experiments and their results; we 
also analyze how variations of some parameter values affect 
planning results. Section V presents results obtained with 
a customized implementation of the method embedding the 
specific techniques of Section IV. Section VI discusses other 
experimental results obtained with a general implementation 
of the method. Section VI1 concludes the paper. 

11. RELATION TO PREVIOUS WORK 

Path planning for robots in known and static workspaces 
has been studied extensively over the last two decades [34]. 
Recently there has been renewed interest in developing heuris- 
tic, but practical path planners. For few-dof robots, many such 
planners have been designed and some are extremely fast (e.g., 
[5], [36]). Considerable attention is now directed toward the 
creation of efficient heuristic planners for many-dof robots. 
Indeed, while such robots are becoming increasingly useful 
in industrial applications, complete methods for such robots 
have overwhelming complexity. New emerging applications 
also motivate that trend, e.g., computer graphic animation, 
where motion planning can drastically reduce the amount of 
data input by human animators, and molecular biology, where 
motion planning can be used to compute motions of molecules 
(modeled as spatial linkages with many dofs) docking against 
other molecules. 

‘All running times reported in this paper have been obtained on a DEC 
Alpha workstation, except those given in Section VI which were obtained 
with a Silicon Graphics Indigo workstation. 

The complexity of complete path planning methods in high- 
dimensional configuration spaces has led researchers to seek 
heuristic methods that embed weaker notions of complete- 
ness (e.g., probabilistic completeness) and/or can be partially 
adapted to specific problem domains in order to boost perfor- 
mance in those domains. 

In recent years, some of the most impressive results were 
obtained using potential field methods. Such methods are 
attractive, since the heuristic function guiding the search for a 
path, the potential field, can easily be adapted to the specific 
problem to be solved, in particular the obstacles and the goal 
configuration. The main disadvantage of these planners is 
the presence of local minima in the potential fields. These 
minima may be difficult to escape. Local minima-free potential 
functions (also called navigation functions) have been defined 
in [6], [31], [46]. But these functions are expensive to compute 
in high-dimensional configuration spaces and have not been 
used for many-dof robots. 

One of the first successful potential field planners for robots 
with many dof is described in [17]. This planner has been 
used to compute paths of an 8-dof manipulator among vertical 
pipes in a nuclear plant, with interactive human assistance 
to escape local minima. In [18] the same authors present a 
learning scheme to avoid falling into the local minima of 
the potential field. During the learning phase, probabilities 
of moving between neighboring configurations without falling 
into a local minimum are accumulated in an rn array, where 
n is the number of dofs and T is the number of intervals 
discretizing the range of each dof. During the planning phase, 
these probabilities are used as another heuristic function (in 
addition to the potential function) to guide the robot away 
from the local minima. This learning scheme was applied with 
some success to robots with up to 6 dofs. However, the size 
of the rn array becomes impractical when n grows larger. 

Techniques for both computing potential functions and 
escaping local minima in high-dimensional C-spaces are pre- 
sented in [5], [6]. The Randomized Path Planner (RPP) de- 
scribed in [6] escapes local minima by executing random 
walks. It has been successfully experimented on difficult 
problems involving robots with 3 to 31 dofs. It has also 
been used in practice with good results to plan motions 
for performing riveting operations on plane fuselages [20], 
and to plan disassembly operations for the maintenance of 
aircraft engines [ l l ] .  Recently, RPP has been embedded in 
a larger ‘ ‘manipulation planner” to automatically animate 
scenes involving human figures modeled with 62 dofs [32]. 
However, several examples have also been identified where 
RPP behaves poorly [lo], [50]. In these examples, RPP falls 
into local minima whose basins of attraction are mostly 
bounded by obstacles, with only narrow passages to escape. 
The probability that any random walk finds its way through 
such a passage is almost zero. In fact, once one knows how 
RPP computes the potential field, it is not too difficult to 
create such examples. One way to prevent this from happening 
is to let W P  randomly use several potential functions, but 
this solution is rather time consuming. Our roadmap planner 
deals efficiently with problems that are difficult for RPP, as 
discussed in Section V. 
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Other interesting lines of work include the method in 
[3] which is based on a variational dynamic programming 
approach and can tackle problems of similar complexity to the 
problems solved by RPP. In [21], [22] a sequential framework 
with backtracking is proposed for serial manipulators, and in 
[14] a motion planner with performance proportional to task 
difficulty is developed for arbitrary many-dof robots operating 
in cluttered environments. The planner in [33] finds paths 
for six-dof manipulators using heuristic search techniques that 
limit the part of the C-space that is explored, and the planner 
in [I] utilizes genetic algorithms to help search for a path in 
high-dimensional C-spaces. Parallel processing techniques are 
investigated in [lo], [38]. 

The planning method presented in this paper differs sig- 
nificantly from the methods referenced above, which are for 
the most part based on potential field or cell decomposition 
approaches. Instead, our method applies a roadmap approach 
[34], that is, it constructs a network of paths in free C- 
space. Previous roadmap methods include the visibility graph 
[39], Voronoi diagram [41], and silhouette [8] methods. All 
these three methods compute in a single shot a roadmap that 
completely represents the connectivity of the free C-space. The 
visibility graph and Voronoi diagram methods are limited to 
low-dimensional C-spaces. The silhouette method applies to 
C-spaces of any dimension, but its complexity makes it little 
practical. 

Roadmaps have also been built and used incrementally in 
several other planners. The planner in [9] incrementally builds 
the skeleton of the C-space using a local opportunistic strategy. 
This work has inspired the approaches in [15], [45] which 
construct retracts of the free C-space using sensor data and 
thus do not assume that the (static) environment in which the 
robot moves is knowri a priori. The approach in [12] builds 
a sparse network of robot subgoals with the use of a simple 
and a computationally expensive planner. This network can 
also include information to accommodate local changes in the 
environment [2], [ 131. 

Our method emphasizes efficiency and is primarily de- 
veloped for robots with many dofs which move in static 
environments. We are not aware of other roadmap techniques 
that have been effectively applied to high-dimensional C- 
spaces. The approach we discuss in this paper uses proba- 
bilistic techniques to incrementally build a roadmap in the 
free C-space of the robot. It can produce a roadmap in 
any amount of allocated time. If the time spent on the 
construction of the roadmap is short, the roadmap may not 
adequately represent the connectivity of the free C-space. 
Actually, in our planner, the roadmap is never guaranteed 
to fully represent free C-space connectivity, though if we let 
our techniques run long enough it eventually will (but we 
don’t know how long is enough). However, while building 
the roadmap, our method heuristically identifies “difficult’ ’ 
regions in free C-space and generates additional configurations 
in those regions to increase network connectivity. Therefore, 
the final distribution of configurations in the roadmap is 
not uniform across free C-space; it is denser in regions 
considered difficult by the heuristic function. This feature helps 
to construct roadmaps of a reasonable size that represent free 

C-space connectivity well. In particular, it allows our imple- 
mented planner to efficiently solve tricky problems requiring 
proper choices among several narrow passages, i.e., the kind 
of problems that potential field techniques like RPP tackle 
poorly. 

Note also that, like most practical methods for many-dof 
robots (one exception is the method in [17]), RE’P is a one- 
shot method, i.e., it does not precompute any knowledge of 
the free C-space that is transferred from one run to another. 
Consequently, on problems that both RPP and our method 
solve well, the latter is usually much faster, once it has 
constructed a good roadmap. But, if the learning time is 
included in the duration of the path planning process (which 
should be the case whenever planning is done only once in 
a given workspace), there are many problems for which RPP 
is faster. 

The authors of this paper are from two different teams and 
the work presented here builds upon previous work they did 
separately. A single-shot random planner was described in [42] 
and was subsequently expanded into a learning approach in 
[43]. In these papers the emphasis was on robots with a rather 
low number of dofs. Similar techniques have been applied 
both to car-like robots that can move forward and backward 
(symmetrical nonholonomic robots) and car-like robots that 
can only move forward [47], [48]. In [49] these results are 
extended to simultaneous motion planning for multiple car- 
like robots. Independently, a preprocessing scheme similar to 
the learning phase was introduced in [28]. This scheme also 
builds a probabilistic roadmap in free C-space, but focuses 
on the case of many-dof robots. The need to expand the 
roadmap in “difficult’ ’ regions of C-space was noted there and 
addressed with simple techniques. Better expansion techniques 
were introduced in [28], [29]. That approach is described in 
detail in [25] and a theoretical analysis bounding the time 
spent by that planner is given in [4], [26], and [30]. The 
present paper combines the ideas of the experimental work 
in these previous papers. Since it only presents a limited 
subset of the experimental results we have obtained with 
our method, the interested reader is encouraged to look into 
our previous papers for additional results, in particular re- 
sults involving other types of robots. Though computation 
times reported in these papers were obtained with different 
versions of our method, their orders of magnitude remain 
meaningful. 

Finally, it should be noted that another planner which bares 
similarities with our approach, but was developed indepen- 
dently of our two teams, is proposed in [23]. 

111. THE GENERAL METHOD 
We now describe our path planning method in general terms 

for a holonomic robot without focusing on any specific type 
of robot. During the learning phase a data structure called 
the roadmap is constructed in a probabilistic way for a given 
scene. The roadmap is an undirected graph R = ( N ,  E ) .  
The nodes in N are a set of configurations of the robot 
appropriately chosen over the free C-space. The edges in E 
correspond to (simple) paths; an edge ( a , b )  corresponds to 
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a feasible path connecting the configurations a and b. These 
paths, which we refer to as local paths, are computed by an 
extremely fast, though not very powerful planner, called the 
local planner. The local paths are not explicitly stored in the 
roadmap, since recomputing them is very cheap. This saves 
considerable space, but requires the local planner to succeed 
and fail deterministically. We assume here that the learning 
phase is entirely performed before any path planning query. 
As we already noted, however, the learning and query phases 
can also be interwoven. 

In the query phase, the roadmap is used to solve individual 
path planning problems in the input scene. Given a start 
configuration s and a goal configuration g, the method first 
tries to connect s and g to some two nodes s” and ij in N .  If 
successful, it then searches R for a sequence of edges in E 
connecting s” to ij. Finally, it transforms this sequence into a 
feasible path for the robot by recomputing the corresponding 
local paths and concatenating them. 

In the following, we let C denote the robot’s C-space and 
Cf its free subset (also called the free C-space). 

A. The Learning Phase 

The learning phase consists of two successive steps, which 
we refer to as the construction and the expansion step. The 
objective of the former is to obtain a reasonably connected 
graph, with enough vertices to provide a rather uniform cov- 
ering of free C-space and to make sure that most “difficult” 
regions in this space contain at least a few nodes. The second 
step is aimed at further improving the connectivity of this 
graph. It selects nodes of R which, according to some heuristic 
evaluator, lie in difficult regions of C-space and expands the 
graph by generating additional nodes in their neighborhoods. 
Hence, the covering of Cf by the final roadmap is not uniform, 
but depends on the local intricacy of the C-space. 

I )  The Construction Step: Initially the graph R = ( N ,  E )  
is empty. Then, repeatedly, a random free configuration is 
generated and added to N .  For every such new node c, we 
select a number of nodes from the current N and try to connect 
c to each of them using the local planner. Whenever this 
planner succeeds to compute a feasible path between c and 
a selected node n, the edge ( c , n )  is added to E.  The actual 
local path is not memorized. 

The selection of the nodes to which we try to connect c 
is done as follows. First, a set N, of candidate neighbors is 
chosen from N .  This set is made of nodes within a certain 
distance of e, for some metric D.  Then we pick nodes from N, 
in order of increasing distance from e. We try to connect c to 
each of the selected nodes if it is not already graph-connected 
to c. Hence, no cycles can be created and the resulting graph 
is a forest, i.e., a collection of trees. Since a query would 
never succeed thanks to an edge that is part of a cycle, it is 
indeed sensible not to consume time and space computing and 
storing such an edge. However, in some cases, the absence 
of cycles may lead the query phase to construct unnecessary 
long paths. This drawback can easily be eliminated by applying 
smoothing techniques to either the roadmap during the learning 

phase, or the particular paths constructed in the query phase, 
or both. Even if the roadmap contained cycles, such smoothing 
operations would eventually produce better paths. 

Whenever the local planner succeeds in finding a path 
between two nodes, the connected components of R are 
dynamically updated. Therefore, no graph search is required 
for deciding whether a node picked from N, is already 
connected to c, or not. 

To make our presentation more precise, let: 
A be a symmetrical function Cf x Cf -+ (0, l}, which 
returns whether the local planner can compute a path 
between the two configurations given as arguments; 
D be a function C x C + R+ U {0}, called the distance 
function, defining a pseudo-metric in C. (We only require 
that D be symmetrical and nondegenerate.) 

The construction step algorithm can be outlined as follows: 

N + 0  
E + 0  
loop 

c +  a randomly chosen free 

N,+ a set of candidate neighbors 
configuration 

of c chosen from N 
N +- N U  { e }  
for all n E N,, in order of 
increasing D ( c , n )  do 
if isame-connected-component(c, n) 

AA(c,  n) then 
E +- E U { ( c , 4 )  
update R’s connected 
components 

A number of components of algorithm above are still 
unspecified. In particular, we need to define how random 
configurations are created in (4), propose a local planner for 
(8), clarify the notion of a candidate neighbor in (5), and 
choose the distance function D used in (7). 

a)  Creation of random conJigurations: The nodes of R 
should constitute a rather uniform random sampling of Cf .  
Every such configuration is obtained by drawing each of its 
coordinates from the interval of values of the corresponding 
dof using the uniform probability distribution over this inter- 
val. The obtained configuration is checked for collision. If it 
is collision-free, it is added to N ;  otherwise, it is discarded. 

Collision checking requires testing if any part of the robot 
intersects an obstacle and if two distinct bodies of the robot 
intersect each other. It can be done using a variety of existing 
general techniques. In the general implementation considered 
in Section VI the test is performed analytically using optimized 
routines from the PLAGE0 library [ 191. Alternatively, we 
could use an iterative collision checker, like the one described 
in [43], which automatically generates successive approxi- 
mations of the objects involved in the collision test. In 2-D 
workspaces, we may use a faster, but more specific collision 
checker (see Section IV). 
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b)  The local planner: Our best experimental results have 
been obtained when the local planner is both deterministic 
and very fast. These requirements are not strict, however. We 
discuss briefly the tradeoffs involved in the choice of the local 
planner. 

If a nondeterministic planner was used, local paths would 
have to be stored in the roadmap. The roadmap would require 
more space, but this would not be a major problem. 

Concerning how fast the local planner should be, there is 
clearly a tradeoff between the time spent in each individual 
call of this planner and the number of calls. If a powerful 
local planner was used, it would often succeed in finding a 
path when one exists. Hence, relatively few nodes would be 
required to build a roadmap capturing the connectivity of the 
free C-space sufficiently well to reliably answer path planning 
queries. Such a local planner would probably be rather slow, 
but this could be somewhat compensated by the small number 
of calls needed. On the other hand, a very fast planner is likely 
to be less successful. It will require more configurations to be 
included in the roadmap; so, it will be called more often, but 
each call will be cheaper. 

The choice of the local planner also affects the query phase. 
The purpose of having a learning phase is to make it possible 
to answer path planning queries quasi-instantaneously. It is 
thus important to be able to connect any given start and 
goal configurations to the roadmap, or to detect that no such 
connection is possible, very quickly. This requires that the 
roadmap be dense enough, so that it always contains a few 
nodes (at least one) to which it is easy to connect each of the 
start and goal configurations. It thus seems preferable to use 
a very fast local planner, even if it is not too powerful, and 
build large roadmaps with configurations widely distributed 
over the free C-space. In addition, if the local planner is very 
fast, we can use the same planner to connect the start and 
goal configurations to the roadmap at query time. Local paths 
needed not be memorized since recomputing them at query 
time is inexpensive. We actually tried several local planners, 
some very fast, some slower but more powerful, and our 
experimental observations clearly confirmed this conclusion 
(e.g., see [40], [47]). 

A quite general such local planner, which is applicable to all 
holonomic robots, connects any two given configurations by 
a straight line segment in configuration space and checks this 
line segment for collision and joint limits (if any). Verifying 
that a straight line segment remains within the joint limits is 
straightforward. On the other hand, collision checking can be 
done as follows [6]. First, discretize the line segment (more 
generally, any path generated by the local planner) into a 
number of configurations c l , .  . . , e,, such that for each pair 
of consecutive configurations ( e 2 ,  c,+1) no point on the robot, 
when positioned at configuration e,, lies further than some eps 
away from its position when the robot is at configuration c,+l 
(eps is a predetermined positive constant).* Then, for each 
configuration c2, test whether the robot, when positioned at 
c2 and "grown" by eps, is collision-free, using the collision 
checker discussed above. If none of the m configurations yield 

parameters of the planning method 
'Throughout this paper symbols in teletyped characters are used to denote 

collision, conclude that the path is collision-free. Since eps is 
constant, the computation of the robot bodies grown by eps 
is done only once. In the following we will refer to this local 
planner as the general local planner. 

c)  The node neighbors: Another important choice to be 
made is that of the set Ne, the candidate neighbors of e. The 
local planner will be called to connect c with nodes in Ne and 
the cumulative cost of these invocations dominates learning 
time. 

We avoid calls of the local planner that are likely to 
return failure by submitting only pairs of configurations whose 
relative distance (according to the distance function 0) is 
smaller than some constant threshold maxdi s t. Thus, we 
define: 

N, = { E  E NID(c, 2) 5 maxdist}. 

Additionally, according to the algorithm outline given above, 
we try to connect c to all nodes in N, in order of increasing 
distance from e; but we skip those nodes which are in the 
same connected component as c at the time the connection is 
to be tried. By considering elements of Ne in this order we 
expect to maximize the chances of quickly connecting c to 
other configurations and, consequently, reduce the number of 
calls to the local planner (since every successful connection 
results in merging two connected components into one). 

In our experiments we found it useful to bound the size of 
the set Ne by some constant maxneighbors (typically on 
the order of 30). This additional criterion guarantees that, in 
the worst case, the running time of each iteration of the main 
loop of the construction step algorithm is independent of the 
current size of the roadmap R. Thus, the number of calls to 
the local method is linear in the size of the graph it constructs. 

d} The distancefunction: The function D is used to both 
construct and sort the set N, of candidate neighbors of 
each new node e. It should be defined so that, for any pair 
( c , n )  of configurations, D ( c , n )  reflects the chance that the 
local planner will fail to compute a feasible path between 
these configurations. One possibility is to define D(c ,n )  as 
a measure (aredvolume) of the workspace region swept by 
the robot when it moves along the path computed by the 
local planner between c and n in the absence of obstacles. 
Thus, each local planner would automatically induce its own 
specific distance function. Since exact computation of swept 
areadvolumes tends to be rather time-consuming, a rough but 
inexpensive measure of the swept-region gives better practical 
results. For example, when the general local planner described 
above is used to connect c and n, D(c ,  n) may be defined as 
follows: 

(1) D(c ,n )  = max IIz(n) - z(c)ll 
 robot 

where z denotes a point on the robot, .(e) is the position 
of x in the workspace when the robot is at configuration c, 
and IIz(n) -z(c) l l  is the Euclidean distance between .(e) and 
4 n ) .  
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2 )  The Expansion Step: If the number of nodes generated 
during the construction step is large enough, the set N gives 
a fairly uniform covering of the free C-space. In easy scenes 
R is then well connected. But in more constrained ones where 
free C-space is actually connected, R often consists of a few 
large components and several small ones. It therefore does not 
effectively capture the connectivity of C,f. 

The expansion step is intended to improve the connectivity 
of the graph R generated by the construction step. Typically, if 
the graph is disconnected in a place where Cf is not, this place 
corresponds to some narrow, hence difficult region of the free 
C-space. The idea underlying the expansion step is to select a 
number of nodes from N which are likely to lie in such regions 
and to “expand” them. By expanding a configuration c, we 
mean selecting a new free configuration in the neighborhood 
of c, adding this configuration to N ,  and trying to connect it 
to other nodes of N in the same way as in the construction 
step. So, the expansion step increases the density of roadmap 
configurations in regions of Cf that are believed to be difficult. 
Since the “gaps” between components of the graph R are 
typically located in these regions, the connectivity of R is 
likely to increase. 

We propose the following probabilistic scheme for the 
expansion step. With each node c in N we associate a positive 
weight w(c)  that is a heuristic measure of the “difficulty” 
of the region around e. Thus, w(c)  is large whenever c is 
considered to be in a difficult region. We normalize w so that 
all weights together (for all nodes in N )  add up to one. Then, 
repeatedly, we select a node c from N with probability: 

Pr(c is selected) = w(c)  

and we expand this node. 
There are several ways to define the heuristic weight ~ ( c ) .  

One possibility is to count the number of nodes of N lying 
within some predefined distance of e. If this number is 
low, the obstacle region probably occupies a large subset of 
e’s neighborhood. This suggests that w(c)  could be defined 
inversely proportional to the number of nodes within some 
distance of e. Another possibility is to look at the distance 
d, from c to the nearest connected component not containing 
e. If this distance is small, then c lies in a region where two 
components failed to connect, which indicates that this region 
might be a difficult one (it may also be actually obstructed). 
This idea leads to defining W ( C )  inversely proportional to 
d,. Alternatively, rather than using the structure of R to 
identify difficult regions, we could define ~ ( c )  according to 
the behavior of the local planner. For example, if the local 
planner often failed to connect c to other nodes, this is also 
an indication that c lies in a difficult region. Which particular 
heuristic function should be used depends to some extent on 
the input scene. A more detailed discussion on expansion 
techniques can be found in [25]. For the framework of this 
paper, the following function has produced good results: 

At the end of the construction step, for each node e, 
compute the failure ratio r f ( c )  defined by: 

where n(c )  is total number of times the local planner tried 
to connect c to another node and f (c )  is the number of 
times it failed. (Note: Whenever the local planner fails to 
connect two nodes c and n, this failure is counted in both 
the failure ratios of c and n. In this way, the configurations 
that are included in N at the very beginning of the 
construction step get meaningful failure ratios.) 
At the beginning of the expansion step, for every node c 
in N ,  compute w(c)  proportional to the failure ratio, but 
scaled appropriately so that all weights add up to one, i.e.: 

To expand a node e, we compute a short random-bounce 
walk starting from c. For holonomic robots, a random-bounce 
walk consists of repeatedly picking at random a direction 
of motion in C-space and moving in this direction until 
an obstacle is hit. When a collision occurs, a new random 
direction is chosen. And so on. The final configuration n 
reached by the random-bounce walk and the edge ( c , n )  
are inserted into R. Moreover, the path computed between 
c and n is explicitly stored, since it was generated by a 
nondeterministic technique. We also record the fact that n 
belongs to the same connected component as c. Then we try to 
connect n to the other connected components of the network 
in the same way as in the construction step. The expansion 
step thus never creates new components in R. At worst, it 
fails to reduce the number of components. 

The weights w(c)  are computed only once at the beginning 
of the expansion step and are not modified when new nodes 
are added to R. Once the expansion step is over, all remaining 
small components of R, if any, are discarded. Here, a com- 
ponent is considered small if its number of nodes is less than 
some mincomponent percent (typically 0.01%) of the total 
number of nodes in N .  The graph R after discarding the small 
components represents the roadmap that will be used during 
the query phase. It may contain one or several components. 

Let TL be the time allocated to the learning phase. Clearly, 
the range of adequate values for TL depends on the scene, and 
these value should be determined experimentally for each new 
scene. If TC is the time spent on the construction step and TE is 
the time spent on the expansion step, we have found that a 2: 1 
ratio between these times, i.e, TC = 2 T ~ / 3  and TE = TI,/& 
gives good results over a large range of problems. 

B. The Query Phase 
During the query phase, paths are to be found between 

arbitrary input start and goal configurations, using the roadmap 
constructed in the learning phase. Assume for the moment that 
the free C-space is connected and that the roadmap consists of 
a single connected component R. Given a start configuration 
s and goal configuration g,  we try to connect s and g to some 
two nodes of R, respectively SX and j ,  with feasible paths P, 
and Pg. If this fails, the query fails. Otherwise, we compute 
a path P in R connecting SX to ij. A feasible path from s to 9 
is eventually constructed by concatenating P,, , the recomputed 
path corresponding to P,  and Pg reversed. If one wishes, this 
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path may be improved by running a smoothing algorithm on it. 
Smoothing techniques that can be used here include the one 
in [35],  which selects random segments of the global path 
and tries to shortcut them by using the local planner, and 
the method in [7], which iteratively performs local geometric 
operations (i.e., cutting off triangle corners). 

The main question is how to compute the paths P, and Pg. 
The queries should preferably terminate quasi-instantaneously, 
so no expensive algorithm is desired here. Our strategy for 
connecting s to R is to consider the nodes in R in order 
of increasing distance from s (according to D )  and try to 
connect s to each of them with the local planner, until one 
connection succeeds. We ignore nodes located further than 
maxdi s t away from s, because the chance of success of the 
local planner is very low. If all connection attempts fail, we 
perform one or more random-bounce walks, as described in III- 
A-2. But, instead of adding the node at the end of each such 
random-bounce walk to the roadmap, we now try to connect 
it to R with the local planner. As soon as s is successfully 
connected to R, we apply the same procedure to connect g 
to R. 

The reconstruction of a robot path from the sequence of 
nodes in P reduces to the concatenation of the paths that 
take the robot between adjacent nodes in P. Some of these 
paths have been produced by random-bounce walks during 
the learning phase and are stored in the relevant edges of 
R. Paths that correspond to connections that have been found 
during learning by the local planner are recomputed. The local 
planner is deterministic and it will produce the same path 
every time it is called with the same input configurations. 
Collisions need not be checked along the recomputed local 
paths if the local planner has the property that it aborts when 
a collision is detected: all intermediate configurations along 
the path have been checked for collision when the local path 
was first computed. An example of a planner having the above 
property is the straight-line planner of Section 111-A-1. If the 
local planner performs a certain (detenninistic) action when a 
collision is detected, then collisions need to be checked along 
the recomputed path so that the same action can be repeated 
just after a collision is detected. 

In general, however, the roadmap may consist of several 
connected components R,, i = 1 , 2 , .  . . , p .  This is usually the 
case when the free C-space is itself not connected. It may also 
happen when free C-space is connected, for instance if the 
roadmap is not dense enough. If the roadmap contains several 
components, we try to connect both s and g to two nodes 
in the same component, starting with the component closest 
to s and g. If the connection of s and g to some component 
R, succeeds, a path is constructed as in the single-component 
case. The method returns failure if it cannot connect both the 
start and goal configuration to the same roadmap component. 
Since in most examples the roadmap consists of rather few 
components, failure is rapidly detected. 

If path planning queries fail frequently, this is an indication 
that the roadmap may not adequately capture the connectivity 
of the free C-space. Hence, more time should be spent in the 
learning phase, i.e., TL should be increased. However, it is 
not necessary to construct a new roadmap from the beginning. 

J4 

J I  

Fig. 1. A planar articulated robot. 

Since the learning phase is incremental, we can simply extend 
the current roadmap by resuming the construction step algo- 
rithm and/or the expansion step algorithm, starting with the 
current roadmap graph, thus interweaving the learning and the 
query phases. 

Iv .  APPLICATION TO PLANAR ARTICULATED ROBOTS 

This section describes the application of our planning 
method to planar articulated robots with fixed or free bases. 
We present techniques specific to these robots that can be 
substituted for the more general techniques in the roadmap 
method in order to increase its efficiency. The purpose of this 
presentation is to illustrate the ease with which the general 
method for holonomic robots can be engineered to better suit 
the needs of a particular application. In Section V we will 
discuss experiments with an implementation of the method 
that embeds the specific techniques described below, while 
in Section VI we will present experimental results with a 
general implementation of the method to demonstrate that 
the method remains quite powerful, even without specific 
components. In the rest of the paper we will refer to these 
two implementations as the customized implementation and 
the general implementation, respectively. 

To make the following presentation shorter, we only con- 
sider the following type of planar articulated robots with an 
arbitrary number of revolute joints. Fig. 1 illustrates such a 
robot in which the links are line segments. The links, which 
may actually be any polygons, are denoted by L1 through 
L, (in the figure, q = 5). Points 51 through 5, designate 
revolute joints. Point J1 denotes the base of the robot; it may, 
or may not, be fixed relative to the workspace. The point Jq+l 
(JG in the figure) is called the endpoint of the robot. Each 
revolute joint J,  (2 = 1, . . . , q )  has defined certain internal 
joint limits, denoted by low, and up,, with low, < up,, 
which constrain the range of the possible orientations that 
L, can take relative to L,-1. If the robot’s base is free, the 
translation of J1 is bounded along the x and y axes of the 
Cartesian coordinate system embedded in the workspace by 
low, and up,, and low, and upv, respectively. We represent 
the C-space of such a q-link planar articulated robot by 
{ [lowl, up11 x . . . x [low,, up,]}, if its base is fixed, and by 

[low,, up,] ,} if its base is free. A self-collision configuration 
is any configuration where two nonadjacent links of the robot 
intersect each other. We do not allow such configurations. 
Thus, the free C-space is constrained by the obstacles and 
by the set of self-collision configurations. We assume that the 
joint limits prevent self-collisions between any two adjacent 
links. 

We now discuss specific techniques for local path planning, 
distance computation, and collision checking that apply well to 

{ [lowr, UPZI x [low,, upy] x IO, 27rI x [lowz, UP21 x . ’ . x 
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the family of robots defined above. The same techniques can 
also be applied, possibly with minor adaptations, to other types 
of articulated robots, e.g., robots with prismatic joints andor 
with multiple kinematic chains [28] and articulated robots in 
3-D workspace [29]. 

1)  Local Path Planning: Let a and b be any two given 
configurations that we wish to connect with the local planner. 
Our local planner constructs a path as follows. It translates 
at constant relative velocity all the joints with an odd index, 
i.e., all J2*z+l’s, along the straight lines in the workspace that 
connect their positions at configuration U to their positions 
at configuration b. During this motion the planner adjusts the 
position of every other joint J2*, using the straightforward 
inverse kinematic equations of this point relative to J2*,-1 

and 52*%+1. Thus, the J ~ * % ’ s  “follow” the motion led by the 
J2*P+l’~. If q is even, the position of Jq is not determined by 
the above rule; it is computed by rotating joint J4 at constant 
revolute velocity relative to the linear velocity of point Jq. 
Recall from Subsection 111-B-1 that a local path is discretized 
into a sequence of configurations for collision checking. When 
our specific technique is used, we must also verify that the 
coordinates of each such configuration are within joint limits. 
Thus, the motion is aborted if either a collision occurs, or 
a joint moves beyond one of its limits, or some Jz*, cannot 
follow the motion led by the J2*r+1’~. We have observed that 
in cases when the above motion does not manage to connect 
configurations a and b, it nevertheless brings the robot to a 
configuration b’ very close to b. It then pays off to try to 
connect b‘ and b with a straight line in C-space and only after 
this fails to declare failure of the local planner to connect a 
and b. We will refer to the above planner as the specific local 
planner. 

The workspace region swept out by the robot along a local 
path computed by the specific local planner between two con- 
figurations a and b is typically smaller than for the path joining 
a and b by a straight line segment in configuration space, 
which is computed by the general local planner described in 
Subsection 111-A-1. Hence, the local paths generated by the 
specific planner are more likely to be collision-free than those 
generated by the general planner. Also, collision checking is 
less expensive since, for a given eps, the discretization of 
the local path yields less configurations. On the other hand, 
the specific planner, though still very fast, is not as fast 
as the general planner. Indeed, it requires inverse kinematic 
computation to determine configuration coordinates along the 
path. Nevertheless, on examples involving many-dof planar 
articulated robots, better results are obtained when the specific 
local planner is used. 

2 )  Distance computation: Let J i ( a ) ,  i = 1, . . . q+1 denote 
the position of the point Ji in the workspace, when the robot 
is at configuration a. We define the distance function D by: 

¶+I 
( a , b )  E c x c - D(a ,b )  = 1 I I J i ( U )  - Ji(b)1I2 

i=l 

where II.Ji(x) - Ji(y)II is the Euclidean distance between 

&(a)  and Ji(b) .  This function is a better approximation of 
the area swept by the robot along the local paths computed by 
the specific local planner than the general distance function 
defined by (1). 

3) Collision Checking: The 2-D workspace allows for a 
very fast collision checking technique. In this technique each 
link of the robot is regarded as a distinct robot with two dofs 
of translation and one dof of rotation. A bitmap representing 
the 3-D configuration space of this robot is precomputed, 
with the “0”’s describing the free subset of this space and 
the “1”’s describing the subset where the link collides with 
an obstacle. When a configuration is checked for collision, 
the 3-D configuration of each link is computed and tested 
against its C-space bitmap, which is a constant-time operation. 
Different 3-D bitmaps must be computed for links of different 
shape. However, if larger links can be modeled as two (or 
more) smaller links, then we need not create one bitmap for 
each link of the robot. For example, when all the links are 
line segments (as in Fig. l), a single bitmap can be computed, 
for the shortest link. Then collision checking for a long link 
requires multiple access to the bitmap of the short link. The 
computation of any 3-D bitmaps needed for collision checking 
is performed only once, prior to the learning phase. 

The 3-D bitmap for one link can be computed as a collection 
of 2-D bitmaps, each corresponding to a fixed orientation of 
the link. If the link and the obstacles are modeled as collections 
of possibly overlapping convex polygons, the construction of 
a 2-D bitmap can be done as follows [36]. First use the 
algorithm in [37] to produce the vertices of the obstacles 
in the link’s C-space. (This algorithm takes linear time in 
the number of vertices of the objects.) Then draw and fill 
the obstacles into the 2-D bitmap. (On many workstations, 
this second operation can be done very quickly using raster- 
scan hardware originally designed to efficiently display filled 
polygons on graphic terminals.) Each 2-D bitmap may also 
be computed using the FTT-based method described in [24], 
whose complexity depends only on the size of the bitmap. 
This FFT method is advantageous when the obstacles are 
originally input as bitmaps. In any case, experiments show 
that computing a 3-D bitmap with a size on the order of 
128 x 128 x 128 takes a few seconds. Clearly, this technique 
is not yet practical for 3-D workspaces, since it requires the 
generation of 6-D bitmaps. 

There are many other ways of adjusting our general path 
planning method to a specific robot. However, too much 
specific tuning may not always be desirable: at some point the 
gain in efficiency becomes smaller than the burden of making 
the specific changes and keeping track of them. 

V. RESULTS WITH CUSTOMIZED IMPLEMENTATION 
In this section we present the performance of our method 

when this is implemented with the local planner, the collision 
checker, and the distance function described in Section IV. 
To be precise, while collision checking with obstacles is 
done using the bitmap technique, self-collisions are detected 
analytically. 
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Fig. 2. Scene 1, with 7-revolute-joint fixed-base robot. 

The planner is implemented in C and for the experiments 
reported here we used a DEC Alpha workstation. This machine 
is rated at 126.0 SPECfp92 and 74.3 SPECint92. We have 
tested our planner on a number of 2-D scenes. Each scene 
contains polygonal obstacles and a planar articulated robot 
whose links are line segments (see Figs. 2 and 6). By no 
means does this reflect a limitation of the method. The specific 
local planner and collision checker of Section IV also apply to 
robots made of polygonal links (though several bitmaps may 
then be required). The parameters of our planner are: 

Tc, the time to be spent in the construction step; 
TE, the time to be spent in the expansion step; 
maxdi s t, the maximal distance between nodes that the 
local planner may try to connect; 
eps, the constant used to discretize local paths before 
collision checking; 
maxneighbors, the maximum number of calls of the 
local planner per node; 
T R B - ~ ~ ~ ~ ~ ~ ,  the duration of the computation of a 
random-bounce walk performed during the expansion step 
(learning phase); 
NRB-query, the maximum number of random-bounce 
walks allowed for connecting the start or goal configura- 
tion to the roadmap (query phase); 
T R B - ~ ~ ~ ~ ~ ,  the duration of the computation of each of 
the raidom-bounce walks during the query phase. 

(Notice that the last two parameters determine an upper 
bound on the time spent in answering a query.) 

For each scene, we first input a set of configurations 
by hand, which we refer to as the test set. For a fixed 
TC and TE, we then independently create many different 
roadmaps starting with different values of the random value 
generator. In the examples here we only keep the largest 
connected component of the roadmap; other components, if 
any, are simply discarded. We then try to connect the same 
configuration in the test set to each of these roadmaps and 
we record the percentage of times our planner succeeds to 
make a connection in a prespecified amount of time (2.5 s). 
The estimated success rates may be used to calculate the 
success rates of queries that involve any two configurations 
in the test set. By performing a large number of experiments, 
we believe that we present a realistic characterization of the 
performance of our planner. In particular, we ensure that 

the results do not reflect just a lucky run, or a bad one. 
We independently repeat the same experiment for different 
TC and TE. For the other parameters described above, we 
choose fixed values throughout the experiments based on some 
preliminary experimental results. Notice that it is important 
to choose the configurations in the test set manually. For 
obvious reasons, a random generation similar to the one used 
during the learning phase tends to produce configurations 
that are easily connected to the roadmap. Instead, proceeding 
manually allows us to select “interesting” configurations, 
for example configurations where the robot lies in narrow 
passages between workspace obstacles. It is unlikely that the 
random generator of the learning phase produced many such 
configurations. 

We present results obtained with two representative scenes 
shown in Figs. 2 (fixed-base robot) and 6 (free-base robot). 

1)  Fixed-Base Articulated Robot: Fig. 2 shows eight con- 
figurations forming the test set of an articulated robot in a 
scene with several narrow gates. The robot has a fixed base, 
denoted by a square, and 7 revolute degrees of freedom. 

The table in Fig. 3 reports the success rates of connecting 
the configurations in the test set to roadmaps obtained with 
different learning times. The learning time, TL, is shown in 
column 1. It is broken into TC and TE in columns 2 and 3 ,  with 
TE = Tc/2 .  The values of the other parameters of the planner 
are: maxdist = 0.4, eps = 0.01 (for the interpretation of 
these two values note that the workspace is described as a 
unit square), maxneighbors = 30, T R B - ~ ~ ~ ~ ~ ~  = 0.01 
Sec, TRB-query = 0.05 sec, NRB-query = 45. 

For every row of the table in Fig. 3 we independently 
generated 30 roadmaps, each with the indicated learning time. 
The roadmaps generated for different rows were also computed 
independently, that is, no roadmap in some row was reused to 
construct a larger one in following row. 

Column 4 in Fig. 3 gives the average number of collision 
checks performed for the roadmap construction for different 
learning times. This number can be regarded as an estimate of 
the computational complexity of the planner. In the context 
of the our approach, it must be interpreted with caution. 
Collision checks are done not only along robot paths, as in 
most planners, but also when trying to guess random free 
configurations of the robot (see Subsection 111-B-1). Most 
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TL TC TE Coll. Avg. 
(sec) (sec) (sec) checks nodes 
20.1 13.1 7.0 621943 1062 

515 

C1 I C, 
100.0 I 36.7 

c 2  
13.3 
50.0 
80.0 
90.0 
90.0 
96.7 
100.0 

c 3  c4 c5 c6 
36.7 10.0 40.0 93.3 
46.7 46.7 46.7 90.0 
80.0 80.0 80.0 100.0 
96.7 90.0 96.7 100.0 
100.0 90.0 100.0 100.0 
100.0 96.7 100.0 100.0 
100.0 100.0 100.0 100.0 

Coll. 
checks 

620238 
905312 

1178494 
1421185 
1661916 
1917744 
2128273 

Size of 
components c1 c3 c, c~ c6 c7 ca 
878, 116, 62 62 F F F F F F F 
1644, 165 78 51 F 7584 F 40 59 F 
2411 53 1148 22 3432 33 44 225 2270 
2881, 63, 10 13 20 20 3877 80 38 20 2328 
3302, 35, 33 57 45 16 22 14 160 51 46 
3869, 52, 10 94 30 19 4764 21 42 74 63 
4245, 49 32 25 16 32 12 89 48 43 

Coll. checks for connection t o  roadmap 

_c_3 
56.7 
70.0 
86.7 
96.7 
100.0 
100.0 
100.0 __ 

* 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 - 

100.0 100.0 
96.7 100.0 

100.0 100.0 

Fig. 3. Results with customized planner for scene of Fig. 2 (with expansion). 

Tc I TR I Coll. 
(sec) (sec) checks * 
50.2 1291216 
60.2 1502089 

50.2 
60.2 

2877 100.0 
3372 100.0 
3877 100.0 
4295 100.0 

Fig. 4. Results with customized planner for scene of Fig. 2 (no expansion). 

20.3 13.3 
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TE 

7.0 
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10.5 
14.1 
17.5 
21.1 
24.6 
28.1 

Fig. 5. Connecting configurations to the roadmap. 

of these randomly guessed configurations are illegal because 
of collisions with the obstacles or self-intersections. On the 
average, this is quickly detected and the collision checker 
aborts almost instantaneously. Column 5 in Fig. 3 reports the 
average number of nodes, over the 30 runs, in the largest 
roadmap component at the end of the learning phase. The 
largest connected component of each roadmap is used for 
query processing. Columns 6-13 are labeled with the eight 
configurations C1, . . . Cg of Fig. 2. The columns report the 
success rate when trying to connect, in less that 2.5 s, 
the corresponding configuration to each of the 30 produced 
roadmaps. One trial (as defined by the parameters maxdist, 
maxneighbors, TRB-query, and NRB-query) was made 
per roadmap. 

The table in Fig. 3 shows that after a learning time of 
60 s or more (rows 5,  6, and 7), all eight configurations of 
Fig. 2 are successfully connected to the generated roadmaps 
with very few exceptions. These are all located in row 6, 
where configurations C,, C, and C, were not connected to 
the roadmaps, once out of the 30 trials of that row. Such 
exceptions are to be expected with a randomized technique. 

Fig. 4 shows the percentage of successful connections to 
roadmaps created without expansion. The corresponding rows 
of the tables in Figs. 3 and 4 report results obtained with 
the same learning time. We again generated 30 independent 

roadmaps in each row in Fig. 4. We show the average number 
of collision checks required to create each roadmap (column 
4), the average number of nodes in the largest component of 
these roadmaps (column 5) ,  and the success rate when trying 
to connect C1 . . . ? C, to them. In general, the percentages of 
successful connections are lower in this table. The difference 
shows more clearly when the learning time is small. If we are 
interested in obtaining a solution to a path planning problem 
as fast as possible, it is thus better to spend part of the 
time allocated to the learning phase on the expansion step 
rather than spend it completely on the construction step. As 
mentioned above, the ratio T ~ / T ~  = 2 gives good results 
over a wide range of problems. 

Let us finally note that connecting Cl,. . . ? CS to the 
roadmaps is very fast, which in turn means that finding a 
path between any two of the above configurations is also fast. 
In Fig. 5 we repeat the experiment of Fig. 3, but now we 
create only one roadmap in each row of the table. We report 
in columns 6 to 13 the actual number of collision checks 
needed to connect Cl, . . . , (78 to the roadmaps produced after 
learning times of 20, 30, 40, 50, 60, 70 and 80 s. Again, 
we try to connect the configurations in the test set only 
to the largest component of these roadmaps, and we report 
failure (indicated by ‘F’) if we do not succeed to do so 
within the allocated time (2.5 s). In most cases, relatively 
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924 
1603 
2460 
2999 
3695 
4229 

Fig. 6. Scene 2, with 5-revolute-joint free-base robot (7-dof). 
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Fig. 7. Results with customized planner for scene of Fig. 6 (with expansion). 

few collision checks are needed for successful connection to 
the roadmap: a few tens to a few hundreds. Infrequently, a 
couple of thousands of collision checks are performed. This 
happens when one or more random-bounce walks are executed 
before the configuration is connected to the roadmap with the 
local planner. In any case, for the machine used for our 
experiments, the above numbers translate to connection times 
of a fraction of second to a few seconds. In the tahle of Fig. 5 
we report in column 4 the size of all roadmap components 
with more than 10 nodes. It is easy to see that after a learning 
time of 40 s, there is a clear difference in the size of the 
major component and the smaller ones. The latter contain 
only a small percentage of the total nodes and their presence 
does not affect path planning. That is why in our analysis 
we considered only the largest component of the roadmaps 
produced by learning. 

Path planning will succeed between any two configurations 
that can be connected to the roadmaps produced. A simple 
breadth-first search algorithm can produce a sequence of edges 
that connect two nodes of the roadmap in a very short time, 
typically a small fraction of second in the machine used. 
Reconstructing the path is equally fast if no collisions need 
to be performed along recomputed local paths (see Subsection 
111-B). In our implementation where collision checks are 
performed when recovering a local path, we spend a few 
tens of thousands of collision checks for connecting between 
different nodes in the roadmap. It is interesting to contrast 
the number of collision checks needed for learning and for 
query processing: collision checks for learning are 2 to 3 
orders of magnitude larger than collision checks needed for 
answering queries. This is also true for any configurations we 
tried in the scene of Fig. 2 and not only the eight configurations 

considered here. RPP, one of the few planners that can tackle 
the path planning problems arising from the configurations in 
Fig. 2, takes a few tens of minutes on the average to solve 
these queries. Thus, even if learning time is included in the 
duration of the path planning process, our roadmap technique 
is still faster than RPP for this example. However, the above 
scene is very difficult for potential field methods. In simpler 
cases (see Section VI) W P  is equally fast, if not faster than 
our roadmap method. 

2 )  Free-Base Articulated Robot: We have performed the 
same experiments for a free-base articulated robot (see Fig. 6). 
The robot has a total of 7 dof: 2 for its free base and 5 for its 
revolute joints. The parameter values of our planner are the 
same as in the previous experiments. 

Figs. 7 and 8 show the results obtained with and without ex- 
pansion, respectively. 30 roadmaps were created independently 
for each row in the above tables. Again, in almost all cases, the 
percentage of successful connections to the roadmaps is greater 
with expansion than without (for the same total learning time). 
After a learning phase of 70 seconds, all configurations can 
be connected to the roadmaps produced. The actual number 
of collision checks for connecting C1, . . . , Ca of Fig. 6 to 
the roadmaps are again in the order of a few tens to a few 
thousands. This makes path planning between any two of the 
configurations shown in Fig. 6 very fast: usually a fraction of 
a second in the machine used. 

VI. RESULTS WITH GENERAL IMPLEMENTATION 

The customized implementation used in the previous section 
solves efficiently path planning problems involving planar 
articulated robots. In this section we demonstrate that the 
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Fig. 8. Results with customized planner for scene of Fig. 6 (no expansion). 

Fig. 9. Scene 1, with 4-dof robot 

general implementation of the planner still gives very good 
results for a variety of examples. 

The planner considered here is essentially an implemen- 
tation of the method described in Section 111. Unlike the 
customized implementation, this implementation does not use 
any specific techniques for local path planning, collision 
checking, or distance computation. Hence, as described in 
Section 111, the local path constructed between any two config- 
urations is the straight line segment joining them in C-space; 
the distance function D is the one defined by Eqn. (1); and 
collision checking is done analytically, using routines from 
the PLAGE0 library [ 191. The planner was implemented on a 
Silicon Graphics Indigo2 workstation rated at 96.5 SPECfp92 
and 90.4 SPECint92. This machine is comparable to the one 
we used for the results in the previous section. We report here 
on experimentation conducted with articulated robots with 4 
or 5 joints connected by polygonal links. This general planner 
is directly applicable to robots with polyhedral links moving 
in 3-D workspaces. 

We present results obtained with two representative exam- 
ples. In scene 1 in Fig. 9, we have a 4-dof robot with three 
revolute joints and one prismatic joint (indicated by the double 
arrow). Scene 2 in Fig. 10, is a slightly more difficult one, with 
a 5-revolute-joint robot and narrow areas in the workspace. 
For most existing planners, motion planning problems in both 
these scenes would be challenging ones. RPP is able to deal 
with these examples efficiently. Still, the cases treated here 
are considerably easier than in the scenes of Section V, due to 
the relatively low number of dofs of the two robots, and the 
presence of only few tight areas in the workspaces. 

The experiments conducted with these two test scenes are 
similar to those in Section V. For each scene, we consider 

Fig. 10. Scene 2, with 5-dof robot. 

only two “difficult” configurations s and g. Then, for a fixed 
construction time TC and expansion time TE (hence, a fixed 
learning time TL), we independently create 30 roadmaps. For 
each of these roadmaps we only consider its main connected 
component and we test whether the query with configurations 
( s , g )  succeeds within 2.5 s. In other words, we test whether 
both s and g can be quickly connected to the main connected 
component of the roadmap with the method described in 
Section 111-B. We repeat this experiment for a number of 
different construction times TC and expansion times TE, with 
TE = Tc/2. For each such pair of times we report the success 
rate in answering the query (s, 9) .  

The other parameters have the following fixed val- 
ues, which are almost the same as in the experimen- 
tation reported in the previous section: maxdist = 
0.5, eps = 0.01, maxneighbors = 30, T R B - ~ ~ ~ ~ ~ ~  = 
0.01, T R B - ~ ~ ~ ~ ~  = 0.05 sec, and NRB-query = 45. Again, 
for the interpretation of the values for maxdist and eps, 
note that we scaled the two scenes in a way that the workspace 
obstacles just fit into the unit square. 

In both Figs. 9 and 10 the start configuration s is shown in 
dark grey, and the goal configuration g in white. In each figure, 
several robot configurations along a path solving the query 
are displayed using various grey levels. The results of the 
experiments described above are given in Fig. 11. The average 
number of collision checks required to build the roadmaps is 
given in column 4 for scene 1 and in column 6 for scene 2. The 
query in scene 1 is solved in all 30 cases after having learned 
for 7.5 s. Learning for 5 s though suffices to successfully 
answer the query in more than 90% of the cases. In scene 2 
we observe a similar behavior, although the required learning 
times are slightly higher. 

These results show that the general implementation is able to 
efficiently solve rather complicated planning problems. How- 
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Fig. 11. Results with general planner for scenes of Fig. 9 and 10 

Fig. 12. Results with general planner for scene of Fig. 2 (with expansion). 

ever, when applied to problems involving more dofs, like those 
in the previous section, the learning times required to build 
good roadmaps are much longer. For example, experiments 
indicated that about 25 minutes of learning are required in 
order to obtain roadmaps that capture well the free C-space 
connectivity of the scene shown in Fig. 2. Fig. 12 reports 
some experimental results obtained over many independently 
constructed roadmaps, for different learning times. As in 
Section V, we estimate the average number of collision checks 
needed during learning and the percentage of times that our 
planner succeeds in connecting some of the configurations of 
Fig. 2 to the roadmap, over many independently constructed 
roadmaps, for different learning times. In such difficult cases, 
clearly, customization is desirable, if not necessary. 

VII. CONCLUSION 
We have described a' two-phase method to solve robot 

motion planning problems in static workspaces. In the learning 
phase, the method constructs a probabilistic roadmap as a 
collection of configurations randomly selected across the free 
C-space. In the query phase, it uses this roadmap to quickly 
process path planning queries, each specified by a pair of con- 
figurations. The learning phase includes a heuristic evaluator 
to identify difficult regions in the free C-space and increase the 
density of the roadmap in those regions. This feature enables 
us to construct roadmaps that capture well the connectivity of 
the free C-space. 

The method is general and can be applied to virtually any 
type of holonomic robot. Furthermore, it can be easily cus- 
tomized to run more efficiently on some family of problems. 
Customization consists of replacing components of the general 
method, such as the local planner, by more specialized ones 
fitting better the characteristics of the considered scenes. In this 
paper, we have described techniques to customize the method 
to planar articulated robots, and presented experimental results 
with both a general and a customized implementation of 
the method. The customized implementation can solve very 
difficult path planning queries involving many-dof robots 
in a fraction of a second, after a learning time of a few 
dozen seconds. The general implementation solves the same 

problems in several minutes, but it is still very efficient in less 
difficult problems. 

In [25], [28],  [29], and [43], prior versions of the method 
have been applied to a great variety of holonomic robots 
including planar and spatial articulated robots with revolute, 
prismatic, and/or spherical joints, fixed or free base, and 
single or multiple kinematic chains. In [47]-[49] a variation 
of the method (essentially one with a different general local 
planner) was also run successfully on examples involving 
nonholonomic car-like robots. 

Experimental results show that our method can efficiently 
solve certain kinds of problems which are beyond the capa- 
bilities of other existing methods. For example, for planar 
articulated robots with many dofs, the customized imple- 
mentation of Section V is much more consistent than the 
Randomized Path Planner (RPP) of [6]. Indeed, the latter can 
be very fast on some difficult problems, but it may also take 
prohibitive time on some others. We have not observed such 
disparity with our roadmap method. Moreover, after sufficient 
learning (usually on the order of a few dozen seconds), the 
probabilistic roadmap method answers queries considerably 
faster than RF'P. However, when the learning time is included 
in the planning time, RPP is faster on many problems, since 
it does not perform any substantial precomputation. 

An important question is how our method scales up when 
we consider scenes with more complicated geometry, since 
the cost of collision checking is much higher. First, let 
us note that in 2-D workspaces the effect is likely to be 
limited if the bitmap collision-checking technique of Section 
IV is used. Indeed, once bitmaps have been precomputed, 
collision checking is a constant-time operation; and the cost of 
computing bitmaps using the FFT-based technique described 
in [24] only depends on the resolution (i.e., the size) of 
these bitmaps. However, more complicated geometry may 
require increasing the bitmap resolution in order to represent 
geometric details with desired accuracy. With 3-D workspaces 
the situation is completely different, since we can no longer 
use the bitmap technique. Our experiments in 3-D workspaces 
reported in [29] show that the higher cost of collision checking 
increases the duration of the learning phase. It affects less the 
query phase, since less collision checks are performed there. 
The results in [29] also show that the duration of the learning 
phase remains quite reasonable (on the order of minutes), but 
they were obtained with simple 3-D geometry (for example, 
the robot links were line segments). For more complicated 
geometries, the use of an iterative collision checker, like the 
one in [44], will be advantageous. The collision checker in 
[44] considers successive approximations of the objects and 
its running time, on the average, does not depend much on the 



KAVRAKI et al.: PROBABILISTIC ROADMAPS FOR PATH PLANNING IN HIGH-DIMENSIONAL CONFIGURATION SPACES 579 

geometric complexity of the scenes. RPP is another planner 
that heavily relies on collision checking. For long we ran 
RPP on geometrically simple problems; but, recently, we used 
it to automatically animate graphic 3-D scenes of complex 
geometry [32] using the above iterative collision checker. We 
observed no dramatic slowdown of the W P  planner. 

A challenging goal would now be to extend the method to 
dynamic scenes. One first question is: how should a roadmap 
computed for a given workspace be updated if a few obstacles 
are removed or added? The work in 121, [ lZ ]  discusses how 
to deal with changes in the environment in the context of 
the hybrid planner presented in [12]. We hope that similar 
techniques could apply to our planner. Being able to plan 
when obstacles move will be very useful because then we 
could apply our method to scenes subject to small incremental 
changes. Such changes occur in many manufacturing (e.g., 
assembly) cells; while most of the geometry of such a cell 
is permanent and stationary, a few objects (e.g., fixtures) 
are added or removed between any two consecutive manu- 
facturing operations. Similar incremental changes also occur 
in automatic graphic animation. A second question is: how 
should the learning and query phase be modified if some 
obstacles are moving along known trajectories? An answer to 
this question might consist of applying our roadmap method in 
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