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The Vector Field Histogram-Fast Obstacle 
Avoidance for Mobile Robots 

Johann Borenstein, Member, IEEE, and Yoram Koren, Senior Member, IEEE 

Abstract-A new real-time obstacle avoidance method for 
mobile robots has been developed and implemented. This 
method, named the vector field histogram (VFH), permits the 
detection of unknown obstacles and avoids collisions while 
simultaneously steering the mobile robot toward the target. 

The VFH method uses a two-dimensional Cartesian his- 
togram grid as a world model. This world model is updated 
continuously with range data sampled by on-board range sen- 
sors. The VFH method subsequently employs a two-stage data- 
reduction process in order to compute the desired control com- 
mands for the vehicle. In the first stage the histogram grid is 
reduced to a one-dimensional polar histogram that is con- 
structed around the robot’s momentary location. Each sector in 
the polar histogram contains a value representing the polar 
obstacle density in that direction. In the second stage, the 
algorithm selects the most suitable sector from among all polar 
histogram sectors with a low polar obstacle density, and the 
steering of the robot is aligned with that direction. 

Experimental results from a mobile robot traversing densely 
cluttered obstacle courses in smooth and continuous motion and 
at an average speed of 0.6-0.7 m/s demonstrate the power of 
the VFH method. 

I. INTRODUCTION 

BSTACLE avoidance is one of the key issues to suc- 0 cessful applications of mobile robot systems. All mobile 
robots feature some kind of collision avoidance, ranging 
from primitive algorithms that detect an obstacle and stop the 
robot short of it in order to avoid a collision through sophisti- 
cated algorithms that enable the robot to detour obstacles. 
The latter algorithms are much more complex, since they 
involve not only the detection of an obstacle, but also some 
kind of quantitative measurements concerning the dimensions 
of the obstacle. Once these have been determined, the obsta- 
cle avoidance algorithm needs to steer the robot around the 
obstacle and proceed toward the original target. Usually, this 
procedure requires the robot to stop in from of the obstacle, 
take the measurements, and only then resume motion. Obsta- 
cle avoidance (also called reflexive obstacle avoidance or 
local path planning) may result in nonoptimal paths [5] since 
no prior knowledge about the environment is used. 

A brief survey of relevant earlier obstacle avoidance meth- 
ods is presented in Section II, while Section 111 summarizes 
the virtual force field (VFF), an obstacle-avoidance method 
developed earlier by our group at the University of Michigan 
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[5]. While the VFF method provides superior real-time ob- 
stacle avoidance for fast mobile robots, some limitations 
concerning fast travel among densely cluttered obstacles were 
identified in the course of our experimental work [18]. To 
overcome these limitations, we developed a new method, 
named vectorfield histogram (VFH), which is introduced in 
Section IV. The VFH method eliminates the shortcomings of 
the VFF method, yet retains all the advantages of its prede- 
cessor (as will be shown in Section IV). A comparison of the 
VFH method to earlier methods is given in Section V, and 
Section VI presents experimental results obtained with our 
VFH-controller mobile robot. 

11. SURVEY OF EARLIER OBSTACLE-AVOIDANCE 
METHODS 

This section summarizes relevant obstacle avoidance meth- 
ods, namely edge-detection , certainty grids, and potential 
field methods. 

A. Edge-Detection Methods 
One popular obstacle avoidance method is based on edge- 

detection. In this method, an algorithm tries to determine the 
position of the vertical edges of the obstacle and then steer 
the robot around either one of the “visible” edges. The line 
connecting two visible edges is considered to represent one of 
the boundaries of the obstacle. This method was used in our 
very early research [4], as well as in several other works 
[ 111, [2 13, [22],  [28], all using ultrasonic sensors for obstacle 
detection. A disadvantage with current implementations of 
this method is that the robot stops in front of obstacles to 
gather sensor information. However, this is not an inherent 
limitation of edge-detection methods; it may be possible to 
overcome this problem with faster computers in future imple- 
mentations. 

In another edge-detection approach (using ultrasonic sen- 
sors), the robot remains stationary while taking a panoramic 
scan of its environment [13], [14]. After the application of 
certain line-fitting algorithms, an edge-based global path 
planner is instituted to plan the robot’s subsequent path. 

A common drawback of both edge-detection approaches is 
their sensitivity to sensor accuracy. Ultrasonic sensors pre- 
sent many shortcomings in this respect: 

Poor directionality limits the accuracy in determining the 
spatial position of an edge to 10-50 cm, depending on the 
distance to the obstacle and the angle between the obstacle 
surface and the acoustic axis. 

Frequent misreadings are caused by either ultrasonic 
noise from external sources or stray reflections from neigh- 
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boring sensors (i.e., crosstalk). Misreadings cannot always 
be filtered out, and they cause the algorithm to falsely detect 
edges. 

Specular reflections occur when the angle between the 
wavefront and the normal to a smooth surface is too large. In 
this case the surface reflects the incoming ultrasound waves 
away from the sensor, and the obstacle is either not detected 
or is “seen” as much smaller than it is in reality (since only 
part of the surface is detected). 

Any one of these errors can cause the algorithm to deter- 
mine the existence of an edge at a completely wrong location, 
often resulting in highly unlikely paths. 

B.  The Certainty Grid for  Obstacle Representation 
A method for probabilistic representation of obstacles in a 

grid-type world model has been developed at Carnegie-Mel- 
lon University (CMU) [13], [23], [24]. This world model, 
called a certainty grid, is especially suited to the accommo- 
dation of inaccurate sensor data such as range measurements 
from ultrasonic sensors. 

In the certainty grid, the robot’s work area is represented 
by a two-dimensional array of square elements, denoted as 
cells. Each cell contains a certainty value (CV) that indi- 
cates the measure of confidence that an obstacle exists within 
the cell area. With the CMU method, CV’s are updated by a 
probability function that takes into account the characteristics 
of a given sensor. Ultrasonic sensors, for example, have a 
conical field of view. A typical ultrasonic sensor [25] returns 
a radial measure of the distance to the nearest object within 
the cone, yet does not specify the angular location of the 
object. (Fig. 1 shows area A in which an object must be 
located in order to result in a distance measurement d ) .  If an 
object is detected by an ultrasonic sensor, it is more likely 
that this object is closer to the acoustic axis of the sensor 
than to the periphery of the conical field of view [4]. For this 
reason, CMU’s probabilistic function C ,  increases the CV’s 
in cells close to the acoustic axis more than the CV’s in cells 
at the periphery. 

In CMU’s applications of this method [23], [24], the 
mobile robot remains stationary while it takes a panoramic 
scan with its 24 ultrasonic sensors. Next, the probabilistic 
function C ,  is applied to each of the 24 range readings, 
updating the certainty grid. Finally, the robot moves to a new 
location, stops, and repeats the procedure. After the robot 
traverses a room in this manner, the resulting certainty grid 
represents a fairly accurate map of the room. A global 
path-planning method is then employed for off-line calcula- 
tions of subsequent robot paths. 

C.  Potential Field Methods 
The idea of imaginary forces acting on a robot has been 

suggested by Khatib [16]. In this method, obstacles exert 
repulsive forces, while the target applies an attractive force to 
the robot. A resultant force vector R ,  comprising the sum of 
a target-directed attractive force and repulsive forces from 
obstacles, is calculated for a given robot position. With R as 
the accelerating force acting on the robot, the robot’s new 
position for a given time interval is calculated, and the 
algorithm is repeated. 

Measured \ I ,/ 
distance d 

sensor 
Fig. 1 .  Two-dimensional projection of the conical field of view of an 
ultrasonic sensor. A range reading d indicates the existence of an object 
somewhere within the shaded region A .  

Krogh [19] has enhanced this concept further by taking 
into consideration the robot’s velocity in the vicinity of 
obstacles. Thorpe [27] has applied the potential field method 
to off-line path planning, and Krogh and Thorpe [20] suggest 
a combined method for global and local path planning, which 
uses a “generalized potential field” approach. Newman and 
Hogan [15] introduce the construction of potential functions 
through combining individual obstacle functions with logical 
operations. 

Common to these methods is the assumption of a known 
and prescribed world model, in which simple predefined 
geometric shapes represent obstacles and the robot’s path is 
generated off-line. 

While each of the above methods features valuable re- 
finements, none have been implemented on a mobile robot 
with real sensory data. By contrast, Brooks [8], [9] and 
Arkin [ 11 use a potential field method on experimental mobile 
robots (equipped with a ring of ultrasonic sensors). Brooks’ 
implementation treats each ultrasonic range reading as a 
repulsive force vector. If the magnitude of the sum of the 
repulsive forces exceeds a certain threshold, the robot stops, 
turns in the direction of the resultant force vector, and moves 
on. In this implementation, however, only one set of range 
readings is considered, while previous readings are lost. 
Arkin’s robot employs a similar method; his robot was 
able to traverse an obstacle course at 0.12 cm/s 
(0.4 f/s). 

111. THE VIRTUAL FORCE FIELD METHOD 

The virtual force field (VFF) method is our earlier real- 
time obstacle avoidance method for fast-running vehicles [5 ] .  
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Fig. 2. (a) Only one cell is incremented for each range reading. with 
ultrasonic sensors, this is the cell that lies on the acoustic axis and corre- 
sponds to the measured-distance d .  (b) A histogramic probability distribution 
is obtained by continuous and rapid sampling of the sensors while the vehicle 
is moving. 

Unlike the methods reviewed above, the VFF method allows 
for fast, continuous, and smooth motion of the controlled 
vehicle among unexpected obstacles and does not require the 
vehicle to stop in front of obstacles. 

A .  The VFF Concept 

sented below. 
The individual components of the VFF method are pre- 

1) The VFF method uses a two-dimensional Cartesian his- 
togram grid C for obstacle representation. As in CMU’s 
certainty grid concept, each cell ( i ,  j )  in the histogram 
grid holds a certainty value ci, that represents the confi- 
dence of the algorithm in the existence of an obstacle at 
that location. 
The histogram grid differs from the certainty grid in the 
way it is built and updated. CMU’s method projects a 
probability profile onto those cells that are affected by a 
range reading; this procedure is computationally intensive 
and would impose a heavy time penalty if real-time execu- 
tion on an on-board computer was attempted. Our method, 
on the other hand, increments only one cell in the his- 
togram grid for each range reading, creating a “probabil- 
ity ’ ’ distribution’ with only small computational over- 
head. For ultrasonic sensors, this cell corresponds to the 
measured distance d [see Fig. 2(a)3 and lies on the acous- 
tic axis of the sensor. While this approach may seem to be 
an oversimplification, a probabilistic distribution is actu- 
ally obtained by continuously and rapidly sampling each 
sensor while the vehicle is moving. Thus, the same cell 
and its neighboring cells are repeatedly incremented, as 
shown in Fig. 2(b). This results in a histogramic proba- 
bility distribution in which high certainty values are 
obtained in cells close to the actual location of the obstacle. 

2) Next, we apply the potential field idea to the histogram 

‘We use the term “probability” in the literal sense of “likelihood.” 

Histogram 
grid 

Target 
@ 

Fig. 3. The virtual force field (VFF) concept: Occupied cells exert repul- 
sive forces onto the robot; the magnitude is proportional to the certainty 
value ci , ,  of the cell and inversely proportional to d2 .  

grid, so the probabilistic sensor information can be used 
efficiently to control the vehicle. Fig. 3 shows how this 
algorithm works : 
As the vehicle moves, a window of w, x w, cells accom- 
panies it, overlying a square region of C .  We call this 
region the “active region” (denoted as C*) ,  and cells that 
momentarily belong to the active region are called “active 
cells” (denoted as c: j ) .  In our current implementation, 
the size of the window is 33 X 33 cells (with a cell size of 
10 cm x 10 cm), and the window is always centered about 
the robot’s position. Note that a circular window would be 
geometrically more appropriate, but is computationally 
more expensive to handle than a square one. 
Each active cell exerts a virtual repulsive force Fi, 
toward the robot. The magnitude of this force is propor- 
tional to the certainty value c: and inversely proportional 
to d”,  where d is the distance between the cell and the 
center of the vehicle, and x is a positive real number (we 
assume x = 2 in the following discussion). At each itera- 
tion, all virtual repulsive forces are totaled to yield the 
resultant repulsive force Fr. Simultaneously, a virtual at- 
tractive force Fl of constant magnitude is applied to the 
vehicle, “pulling” it toward the target. The summation of 
F,. and Ft yields the resulting force vector R .  In order to 
compute R ,  up to 33 x 33 = 1089 individual repulsive 
force vectors Fi, must be computed and accumulated. 
The computational heart of the VFF algorithm is therefore 
a specially developed algorithm for the fast computation 
and summation of the repulsive force vectors. 

3) Combining concepts 1 and 2 (given above) in real-time 
enables sensor data to influence the steering control imme- 
diately. In practice, each range reading is recorded into 
the histogram grid as soon as it becomes available, and the 
subsequent calculation of R takes this data point into 
account. This feature gives the vehicle fast response to 
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obstacles that appear suddenly, resulting in fast reflexive 
behavior imperative at high speeds. 

B. Shortcomings of the VFF Method 

The VFF method has been implemented and extensively 
tested on board a mobile robot equipped with a ring of 24 
ultrasonic sensors (see Section VI). Under most conditions, 
the VFF-controlled robot performed very well. Typically, it 
traversed an obstacle course at an average speed of 0.5 m/s, 
provided the obstacles were places at least 1.8 m apart (the 
robot diameter is 0.8 m). With less clearance between two 
obstacles (e.g., a doorway), some problems were encoun- 
tered. Sometimes, the robot would not pass through a door- 
way because the repulsive forces from both sides of the 
doorway resulted in a force that pushed the robot away. 

Another problem arose out of the discrete nature of the 
histogram grid. In order to efficiently calculate repulsive 
forces in real time, the robot’s momentary position is mapped 
onto the histogram grid. Whenever this position changes 
from one cell to another, drastic changes in the resultant R 
may be encountered. The following numeric example ex- 
plains this point. Consider a repulsive force generated by a 
cell ( m ,  n) and applied to the robot’s momentary position at 
( m ,  n + 6) ,  which is six cells away (i.e., 0.6 m, with a cell 
size of 10 x 10 cm). The magnitude of this particular force 
vector is 1 Fm, 1 = k/0.6* = 2.8k. As the robot advances 
by one cell, and its position corresponds to cell ( m ,  n + 5 ) ,  
the new force vector is 1 FA, 1 = k/0.5* = 4k.  The change 
is 42 % . Changes of this magnitude cause considerable fluc- 
tuations in the steering control. The situation is even worse 
when the magnitude of the target-directed constant attractive 
force F, lies between the directions of the two successive 
forces 1 F 1 and 1 F’ I (this condition is, in fact, most likely 
because it corresponds to the “steady-state’’ condition when 
the robot travels alongside an obstacle). In this situation, the 
direction of the resultant R may fluctuate by up to 180”. For 
this reason it is necessary to smooth the control signal to the 
steering motor by adding a low-pass filter to the VFF control 
loop [5]. This filter, however, introduces a delay that ad- 
versely affects the robot’s steering response to unexpected 
obstacles. 

Finally, we also identified a problem that occurs when the 
robot travels in narrow corridors. When traveling along the 
centerline between the two corridor walls, the robot’s motion 
is stable. If, however, the robot strays slightly to either side 
of the centerline, it experiences a strong virtual repulsive 
force from the closer wall. This force usually “pushes” the 
robot across the centerline, and the process repeats with the 
other wall. Under certain conditions, this process results in 
oscillatory and unstable motion [ 171, [ 181. 

IV. THE VECTOR FIELD HISTOGRAM METHOD 

Careful analysis of the shortcomings of the VFF method 
reveals its inherent problem: excessively drastic data reduc- 
tion occurs when the individual repulsive forces from his- 
togram grid cells are totaled to calculate the resultant force 

- 9 e r t a i n t y  values 
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Fig. 4. Mapping of active cells onto the polar histogram. 

vector F,. Hundreds of data points are reduced in one 

281 

step to 
only two items: the direction and the magnitude of -Fr. 
Consequently, detailed information about the local obsta- 
cle distribution is lost. 

To remedy this shortcoming, we have developed a new 
method called the vectorfield histogram (VFH). The VFH 
method employs a two-stage data-reduction technique, 
rather than the single-step technique used by the VFF method. 
Thus, three levels of data representation exist: 

1) The highest level holds the detailed description of the 
robot’s environment. In this level, the two-dimensional 
Cartesian histogram grid C is continuously updated in real 
time with range data sampled by the on-board range sen- 
sors. This process is identical to the one described in 
Section I11 for the VFF method. 

2) At the intermediate level, a one-dimensional polar his- 
togram H is constructed around the robot’s momentary 
location. H comprises n angular sectors of width CY. A 
transformation (described in Section IV-A below) maps the 
active region C* onto H ,  resulting in each sector k 
holding a value h ,  that represents the polar obstacle 
density in the direction that corresponds to sector k .  

3) The lowest level of data representation is the output of the 
VFH algorithm: the reference values for the drive and 
steer controllers of the vehicle. 

The following sections describe the two data-reduction 
stages in more detail. 

A .  First Data Reduction and Creation of the Polar 
Histogram 

The first data-reduction stage maps the active region C* of 
the histogram grid C onto the polar histogram H ,  as fol- 
lows: As with our earlier VFF method, a window moves 
with the vehicle, overlying a square region of ws x w, cells 
in the histogram grid (see Fig. 4). The contents of each active 
cell in the histogram grid are now treated as an obstacle 
vector, the direction of which is determined by the direction 
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and the magnitude is given by 

mi, = (c: j ) 2 (  a - bdi,  ,) ( 2 )  
where 

a, b are positive constants, 
cr 
di, 
m i ,  
xo,  yo are the present coordinates of the VCP, 
x i ,  y j  are the coordinates of active cell ( i ,  j ) ,  and 
pi, 

is the certainty value of active cell ( i ,  j ) ,  
is the histance between active cell ( i ,  j) and the VCP, 
is the magnitude of the obstacle vector at cell (i, j), 

is the direction from active cell (i, j) to the VCP. 

Notice that 

1 )  Ct is squared. This expresses our confidence that recur- 
ring range readings represent actual obstacles, as opposed 
to single Occurrences of range readings, which may be 
caused by noise. 

is proportional to - d .  Therefore, occupied cells 
produce large vector magnitudes when they are in the 
immediate vicinity of the robot and smaller ones when they 
are further away. Specifically, a and b are chosen such 
that a - bd,,, = 0 ,  where d,,, = &(w, - 1 ) / 2  is the 
distance between the farthest active cell and the VCP. This 
way mi, = 0 for the farthest active cell and increases 
linearly for closer cells. 

2)  mi, 

Targl 
0 

I A. - . . .... - . . .  
1 2 3 w'w 

H has a arbitrary angular resolution a such that TI = 

'For symmetrically shaped vehicles, the VCP is easily defined as the 
geometric center of the vehicle. For rectangular vehicles, it is possible to 
chose two VCP's, e .g . ,  one each at the center point of the front and rear 
axles. 

Cutahty V J a r  
dDwn as . CV.1-3 - cv4-5 - cv.1-9 - cV=1&12 . cv=l3-15 

(a) (b) 
Fig. 5. (a) Example of an obstacle course. (b) The corresponding his- 

togram grid representation. 

360/a is an integer (e.g., a = 5" and n = 72). Each sector 
k corresponds to a discrete angle p quantized to multiples of 
a, such that p = ka, where k = 0, 1,2; -, n - 1. corre- 
spondence between c: and sector k is established through 

k = INT(P , , , / a ) .  (3) 

h k  = c m1,J. (4) 

For each sector k, the polar obstacle density h is calculated 
by 

1 ,  J 

E k h  active cell is related to a certain sector by (1) and (3). 
In Fig. 4, which shows the mapping from C* into H, all 
active cells related to sector k have been highlighted. Note 
tliat the sector width in Fig. 4 is a = 10" (not a = 5 " ,  as in 
the actual algorithm) to clarify the drawing. 

Because of the discrete nature of the histogram grid, the 
result of this mapping may appear ragged and cause errors in 
the selection of the steering direction (as explained in Section 
IV-B). Therefore, a smoothing function is applied to H, 
which is defined by 

2 1 +  1 
( 5 )  

where h',k is the smoothed polar obstacle density (POD). 
In our current implementation, I = 5 yields satisfactory 
smoothing results. 

Fig. 5(a) shows a typical obstacle setup in our lab. Note 
that the gap between obstacles B and C is only 1.2 m and 
that A is a thin pole of 3/4-in diameter. The histogram grid 
obtained after partially traversing this obstacle course is 
shown in Fig. 5@).  The (smoothed) polar histogram corre- 
sponding to the momentary position of the robot 0 is shown 
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(a) (b) 
Fig. 6. (a) Polar obstacle density represented in the smoothed polar 
histogram H’(k)-relative to the robot’s position at 0 [in Fig. 5@)]. @) 
The same polar histogram as in (a), shown in polar form and overlaying part 
of the histogram grid of Fig. 5 @ ) .  

Target 

Candidate directions 
= for safe travel 

POD <threshold 

Unsafe directions, 
= prohibited for travel 

POD >threshold 

rtition 
C 

Fig. 7 .  A threshold on the polar histogram determines the candidate 
directions for subsequent travel. 

in Fig. 6(a). The directions (in degrees) in the polar his- 
togram correspond to directions measured counterclockwise 
from the positive x axis of the histogram grid. The peaks 
A , B ,  and C in the polar histogram result from obstacle 
clusters A ,  B ,  and C in the histogram grid. Fig. 6(b) shows 
the polar form of the exact same polar histogram as Fig. 6(a), 
overlaying part of the histogram grid of Fig. 5(b). 

B. Second Data Reduction and Steering Control 
The second data-reduction stage computes the required 

steering direction 8. This section explains how 8 is com- 
puted. 

As can be seen in Fig. 6, a smoothed polar histogram 
typically has “peaks,” i.e., sectors with high POD’s, and 
“valleys,” i.e., sectors with low POD’s. Any valley com- 
prised of sectors with POD’s below a certain threshold (see 
discussion in Section IV-C) is called a candidate valley. Fig. 
7 visualizes the match between candidate valleys and the 
actual environment: Based on the threshold and the polar 
histogram of Fig. 6, candidate valleys are shown as lightly 
shaded sectors in Fig. 7, while unsafe directions (i.e., those 
with POD’s above the threshold) are shown in darker shades. 

Usually there are two or more candidate valleys and the 
VFH algorithm selects the one that most closely matches the 
direction to the target kbrg (an exception to this rule is 
discussed in Section IV-E). Once a valley is selected, it is 

further necessary to choose a suitable sector within that 
valley. The following discussion explains how the algorithm 
finds this sector and thus the required steering direction. 

At first, the algorithm measures the size of the selected 
valley (i.e., the number of consecutive sectors with POD’s 
below the threshold). Here, two types of valleys are distin- 
guished, namely, wide and narrow ones. A valley is consid- 
ered wide if more than s,,, consecutive sectors fall below 
the threshold (in our system s,,, = 18). Wide valleys result 
from wide gaps between obstacles or from situations where 
only one obstacle is near the vehicle. Fig. 8 shows a typical 
obstacle configuration that produces a wide valley. The sector 
that is nearest to kbrg and below the threshold is denoted k ,  
and represents the near border of the valley. The fur 
border is denoted as k,  and is defined as k,  = k ,  + s,,,. 
The desired steering direction 8 is then defined as 8 = ( k ,  
+ k,) /2 .  Fig. 8 demonstrates why this method results in a 
stable path when traveling alongside an obstacle: If the robot 
approaches the obstacle too closely [Fig. 8(a)], 8 points away 
from the obstacle. If the robot is further away from the 
obstacle, 8 allows the robot to approach the obstacle more 
closely [Fig. 8(b)]. Finally, when traveling at the proper 
distance d,  from the obstacle [Fig. 8(c)], 8 is parallel to the 
obstacle boundary and small disturbances from this parallel 
path are corrected as described above. Note that the distance 
d,  is mostly determined by smax. The larger s,,,, the further 
the robot will keep from an obstacle, under steady-state 
conditions. 

The second case, a narrow valley, is created when the 
mobile robot travels between closely spaced obstacles, as 
shown in Fig. 9. Here the far border k,  is less than smaX 
sectors apart from k,.  However, the direction of travel is 
again chosen as 8 = ( k ,  + k f ) / 2  and the robot maintains a 
course centered between obstacles. 

Note that the robot’s ability to pass through narrow pas- 
sages and doorways results from the ability to identify a 
narrow valley and to choose a centered path through that 
valley. This feature is made possible through the intermediate 
data representation in the polar histogram. Our earlier VFF 
method and other potential field methods, by contrast, lack 
this ability [ 181. 
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Fig. 8. Obtaining a stable path when traveling alongside an obstacle: (a) 0 
points away from the obstacle when the robot is too close. (b) 0 points 
toward the obstacle when the robot is further away. (c) Robot runs alongside 
the obstacle when at the proper distance d,. 

Another important benefit from this method is the elimina- 
tion of the vivacious fluctuations in the steering control (a 
problem associated with the VFF method). With the averag- 
ing effect of the polar histogram and the additional smoothing 
by (5 ) ,  k, and kf (and consequently 0)  vary only mildly 
between sampling intervals. Thus, the VFH method does not 
require a low-pass filter in the steering control loop and is 
therefore able to reach much faster to unexpected obstacles. 
Similarly, a VFH-controlled robot does not oscillate when 
traveling in narrow corridors (as is the case with potential 
field methods, under certain circumstances [ 181). 

C. The Threshold 
As mentioned above, a threshold is used to determine the 

candidate valleys. While choosing the proper threshold is a 
critical issue for many sensor-based systems, the perfor- 
mance of the VFH method is largely insensitive to a fine-tuned 
threshold. This becomes apparent when considering Fig. 6: 

Fig. 9. Finding the steering reference direction 0 when k, is obstructed 
by an obstacle. 

Lowering or raising the threshold even by a factor of 3 or 4 
only affects the width of the candidate valleys. This, in turn, 
has only a small effect on narrow valleys, since the steering 
direction is chosen in the center of the valley. In wide 
valleys, only the distance d ,  from the obstacle is affected. 

Severe maladjustments of the threshold have the following 
effect on the system performance: 

1) If the threshold is much too large [e.g., higher than peak A 
in Fig. 6(a)], the robot is not “aware” of that obstacle and 
approaches it on a collision course. However, during the 
approach, additional sensor readings further increase the 
CV’s representing that obstacle, while the distance d to the 
affected cells decreases. As is evident from (2) ,  this results 
in higher POD’S and consequently in a higher “peak” that 
eventually exceeds the threshold. However, in this case the 
robot may approach the obstacle too closely (especially 
when traveling at high speed) and collide with the objects. 

2) If, on the other hand, the threshold is much too low, some 
potential candidate valleys will be precluded and the robot 
will not pass through narrow passages. 

In summary, it can be concluded that the VFH system 
needs a fine-tuned threshold only for the most challenging 
applications (e.g., travel at high speed and in densely clut- 
tered environments); under less demanding conditions, the 
system performs well even with an imprecisely set threshold. 

One way to optimize performance is to set an adaptive 
threshold from a higher hierarchical level, e.g., as a func- 
tion of a “global” plan. For example, during normal travel 
the threshold is set to a very safe, low level. If the global 
plan calls for passing through a narrow passage (e.g., a 
doorway), the threshold is temporarily raised while the travel 
speed is lowered. 

D. Speed Control 
The robot’s maximum speed V,,, can be set at the begin- 

ning of a run. The robot tries to maintain this speed during 
the run unless forced by the VFH algorithm to a lower 
instantaneous speed V ,  which is determined in each sampling 
interval as follows: 
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The smoothed polar obstacle density in the current direc- 
tion of travel is denoted as h’,. h’, > 0 indicates that an 
obstacle lies ahead of the robot. Large values of h’, mean a 
large obstacle lies ahead or an obstacle is very close to the 
robot. Either case is likely to require a drastic change in 
direction, and a reduction in speed is necessary to allow the 
steering wheels to turn into the new direction. This reduction 
in speed is implemented by the following function: 

V’ = V,,, ( 1  - h’f / h,) (6) 

h’f = min(h’,, h,) (7) 

where 

The maximum travel speed of a VFH-controlled robot is 
limited by the sampling rate of the ultrasonic sensors and not 
by the computation time of the algorithm. In our system, it 
takes 160 ms to have all 24 ultrasonic sensors sampled and 
processed once. We estimate that with our current computing 
hardware (see Section VI) a travel speed of up to 1.5 m/s is 
possible if the sampling rate of the sensors could be doubled. 
The relationship between sampling time, the robot travel 
speed, the signal-to-noise ratio, and the resulting certainty 
values is rather complicated and cannot be treated here 
because of space limitations (a through discussion of this 
problem is given in 161 and [71). 

and h,  is an empirically determined constant that causes a V. COMPARISON TO EARLIER METHODS ... 
sufficient reduction in speed. Note that (7) guarantees V‘ L 0, 
since h‘f s h,. 

pation of a steering maneuver, speed can be further reduced 
proportionally to the actual steering rate Q: 

During our research in obstacle avoidance for mobile 
robots [2]-[5], we implemented and evaluated some of the 

performance of our new VFH method to these earlier meth- 
ods . 

(6) and (7) reduce the speed Of the robot in methods discussed in Section 11. This section the 

V =  V‘(1 - Q / Q , , , )  + Vmin 

where Q,,, is the maximal allowable steering rate for the 
mobile robot (in our system a,,, = 120°/s). 

Note that V is prevented from going to zero be setting a 
lower limit for V ,  namely V 1 V,,,; in our implementation 
Vmin = 4 cm/s. 

E. Limitations and Remedies 
The VFH method is a local path planner, i.e., it does not 

attempt to find an optimal path (an optimal path can only be 
found if complete environmental information is given). Fur- 
thermore, a VFH-controlled robot may get “trapped” in 
dead-end situations (as is the case with other local path 
planners). When trapped, mobile robots usually exhibit what 
has been called “cyclic behavior,” i.e., going around in 
circles or cycling between multiple traps (typical examples 
for cyclic behavior are discussed in [5]). While it is possible 
to devise a set of heuristic rules that would guide the robot 
our of trap situations and resolve cyclic behavior [5], the 
resulting path is still not optimal. 

To resolve these problems, we have introduces a path 
monitor that works as follows: If the robot diverts from the 
target direction khrg (see Fig. 9) the path monitor records 
this as either left (as is the case in Fig. 9) or right diversion 
mode. Subsequently, when looking for the near border of the 
closest candidate valley, k, (see Section IV-B), the VFH 
algorithm searches to the left or right of ktarg, according to 
the original diversion mode. If k ,  cannot be found within 
n = 1 8 0 ° / a  = 36 sectors, the path monitor flags a trap 
situation. Once a certain diversion mode has been set, it is 
only cleared if the robot faces again into the target direction. 

When a trap situation is flagged, the robot slows down 
(and may come to a complete halt), while the VFH algorithm 
is temporarily suspended. A global path planner (GPP) 
algorithm is then invoked to plan a new path based on the 
available information in the histogram grid [29]. The new 
path comprises a set of via points that are then presented as 
intermediate target locations to the VFH algorithm. 

A .  Comparison to Edge-Detection Methods 
The blurry and inaccurate data produced by ultrasonic 

sensors does not provide the sharply defined contours re- 
quired by edge-detection methods. Consequently, misread- 
ings or inaccurate range measurements may be interpreted as 
part of an obstacle, thereby distorting the perceived shape of 
the obstacle. 

The VFH method, on the other hand, reacts to clusters of 
range readings. As soon as a range reading has been sam- 
pled, it becomes available to the steering controller (via the 
histogram grid) and can influence the path of the vehicle 
immediately. A single range reading will have only minor 
influence on the path, while repeated range readings in a 
confined area (cluster) will cause a more drastic change of 
direction for the vehicle. 

The force field method developed by Brooks [8], [9] and 
the similar method developed by Arkin [l], do function in 
experimental real-time systems, using actual sensory data [8], 
[9]. However, these methods are somewhat oversimplified, 
since a threshold determines if an object is at a safe distance 
or too close. In the latter case, and because of the binary 
character of the threshold, the robot must stop and rotate 
away from the object before resuming motion. An additional 
shortcoming of these methods is their susceptibility to mis- 
readings (due to ultrasonic noise, crosstalk, etc.) since they 
take into account only one set of range readings (one reading 
from each ultrasonic sensor). Consequently, misreadings and 
correct readings (i.e., those produced by actual obstacles) 
have the same weight. Therefore, a single misreading can 
cause the resultant force to exceed the threshold level and 
“scare” the robot away from a possible safe, free path. Our 
method, on the other hand, also takes into account past 
measurements by means of the histogram grid, thereby in- 
creasing the weight of recurring measurements, while mini- 
mizing the weight of randomly occurring misreadings. In 
addition, the smoothing function [see (5)] reduces the weight 
of false readings. Thus, the VFH method results in much 
more robust and error-resistant control. An additional advan- 
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Fig. 10. CARMEL, The University of Michigan’s Mobile Robot. 

tage of the VFH method is the permanent map information 
contained in the histogram grid after a run. Brooks’ and 
Arkin’s methods, on the other hand, do not produce a 
permanent record. 

A critical discussion of both simulated and experimental 
potential field methods is given in [18]. Also, based on a 
rigorous mathematical analysis, [ 181 discusses six inherent 
shortcomings of potential field methods. 

B. Reflexive versus Reactive Control 
On the more abstract level, researchers are beginning to 

distinguish between tow fundamentally different approaches 
to mobile robot obstacle avoidance. The “conventional” 
approach, reactive control, is based on the traditional artifi- 
cial intelligence model of human cognition. Reactive control 
algorithms reason about the robot’s perception (sensor data) 
while building elaborate world models (memory) and subse- 
quently plan the robot’s actions. This approach requires large 
amounts of computation and decision making, resulting in a 
relatively slow response of the system. Reflexive control 
(with Brooks as one of its foremost proponents), eliminates 
cognition altogether. In reflexive control there is no planning 
and reasoning; nor are there world models. Simple reflexes 
tie actions to perceptions, resulting in faster response to 
outside stimuli. 

At first glance it may seem that our VFH method is a 
typical example of reactive control, considering the his- 
togram grid world model and even a second model, the polar 
histogram. However, some distinctions should be made. Our 
world model, the histogram grid, has two different functional 
properties, namely a short-term effect and a long-term effect. 
The long-term effect is provided by the whole histogram 
grid, as described in Section III. The information stored in 

the histogram grid may serve for map building purposes and 
for the global path planner (see Section IV-E). A large 
histogram grid, however, is not necessary for our algorithm 
to work properly. It is the short-term effect of the histogram 
grid that is important for the VFH algorithm. As explained in 
Section IV-A, only cells within the active window influence 
the VFH computations. Since the active window travels with 
the robot, cells are only briefly inside the window and have 
thus only a temporary (short term) effect. Also, since the 
ultrasonic sensors are limited to only 2-m look-ahead (about 
the size of the active window), only cells inside the window 
are updated with sensor information. Therefore, the VFH 
algorithm would work equally well if all information was lost 
from cells that are outside of the active window. Through the 
concept of the active window, the histogram grid becomes a 
type of “short-term memory,” where readings are retained 
briefly (while the active window sweeps through the area) to 
enhance the accuracy by accumulating multiple sensor read- 
ings. In a way, this process is similar to the short-term 
memory associated with human hearing. Without this mecha- 
nism, people would hear but not necessarily comprehend all 
speech. 

VI. EXPEFUMENTAL RESULTS 
We implemented and tested the VFH method on our 

mobile robot, CARMEL (Computer-Aided Robotics for 
Maintenance, Emergency, and Life support). CARMEL is 
based on a commercially available mobile platform [12], as 
seen in Fig. 10. This platform has a maximum travel speed of 
V,,, = 0.78 m/s, a maximum steering rate of Q = 120”/s, 
and weighs (in its current configuration) about 125 kg. The 
platform has a hexagonal structure and a unique three-wheel 
drive (synchro-drive) that permits omnidirectional steering. 
A 2-80 on-board computer serves as the low-level controller 
of the vehicle. Two computers were added: a PC-compatible 
single-board computer to control the sensors, and a 20-Mhz 
80386-based AT-compatible that runs the VFH algorithm. 

CARMEL is equipped with a ring of 24 ultrasonic sensors 
[25]. The sensor ring has a diameter of 0.8 m, and objects 
must be at least 0.27 m away from the sensors to be detected. 
Therefore, the theoretical minimum width for safe travel in a 
passageway is Wmin = 0.8 + 2 * 0.27 = 1.34 m. 

In extensive tests, we ran the VFH-controlled CARMEL 
through difficult obstacle courses. The obstacles were un- 
marked, commonplace objects such as chairs, partitions, and 
bookshelves. In most experiments, CARMEL ran at its maxi- 
mum speed V,,, = 0.78 m/s. This speed was only reduced 
when an obstacle was approached head-on (see discussion of 
speed control in Section IV-D). 

Fig. 11 shows the histogram grid after a run through a 
particularly challenging obstacle course of 3 /Gin-diameter 
vertical poles spaced at a distance of about 1.4 m from each 
other. The actual location of the rods is indicated by plus (+) 
symbols in Fig. 11. It should be noted that none of the 
obstacle locations were known to the robot in advance: the 
CV clusters in Fig. 11 gradually appeared on the operator’s 
screen while CARMEL was moving. 

To test the performance limits of our system, we per- 

__ 
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Fig. 1 1 .  Histogram grid representation of a run through a field of densely 
spaced, thin vertical poles. The average speed is this run was Vavrg = 0.58 
m/s. 

formed a variety of experiments with other slender obstacles. 
For example, 1/2-in-diameter poles were still detected, but 
not reliable so when approached at CARMEL’s maximum 
speed. Unreliable detection would also result when 1 in x 1 
in square rods were used. Larger objects, such as 2-in-diame- 
ter cylinders, square-shaped cardboard boxes, furniture, and 
even slowly walking people are reliable detected and avoided. 
These obstacles are easier to detect than the 3/4-in poles in 
the experiment described here. 

Each blob in Fig. 11 represents one cell in the histogram 
grid. In our current implementation, certainty values (CV’s) 
range from 0 to 15 and are indicated in Fig. 11 by blobs of 
varying sizes. CV = 0 means no sensor reading has been 
projected onto the cell during the run (i.e., no blob), while 
CV’s > 0 indicate the increasing confidence in the existence 
of an object at that location. CARMEL traversed this obsta- 
cle course at an average speed of 0.58 m/s without stopping 
for obstacles. Note that this is a typical experimental run, and 
similar performance has been routinely obtained in countless 
experiments and demonstrations, using different kinds of 
obstacles at random layouts. 

An indication of the real-time performance of the VFH 
algorithm is the sampling time T (i.e., the rate at which the 
steer and speed commands for the low-level controller are 
issued). The following steps occur during T :  

histogram (VFH) method, has been developed and success- 
fully tested on our experimental mobile robot CARMEL. The 
VFH algorithm is computationally efficient, very robust, and 
insensitive to misreadings, and it allows continuous and fast 
motion of, the mobile robot without stopping for obstacles. 
The VFH-controlled mobile robot traverses very densely 
cluttered obstacle courses at high average speeds and is able 
to pass through narrow openings (e.g., doorways) or negoti- 
ate narrow corridors without oscillations. 

The VFH method is based on the following principles: 

A two-dimensional Cartesian histogram grid is continu- 
ously updated in real-time with range data sampled by 
the on-board range sensors. 
The histogram grid is reduced to a one-dimensional 
polar histogram that is constructed around the momen- 
tary location of the robot. The polar histogram is the 
most significant distinction between the VFF and the 
VFH methods as it allows a spatial interpretation (called 
polar obstacle density) of the robot’s instantaneous 
environment. 
Consecutive sectors with a polar obstacle density below 
threshold are called “candidate valleys. ” The candidate 
valley closest to the target direction is selected for 
further processing. 
The direction of the center of the selected candidate 
direction is determined and the steering of the robot is 
aligned with that direction. 
The speed of the robot is reduced when approaching 
obstacles head-on. 

The characteristic behavior of a VFH-controlled mobile 
robot is best described as follows: The response of the 
vehicle is dependent on the likelihood for  the existence of 
an obstacle. In the histogram grid, this likelihood is ex- 
pressed in terms of size and certainty values of a cluster. This 
information is transformed into the height and width of an 
elevation in the polar histogram. The strength of the VFH 
method lies thus in its ability to maintain a statistical obstacle 
representation at both the histogram grid level as well as at 
the intermediate data level, the polar histogram. This feature 
makes the VFH method especially suited to the accommoda- 
tion of inaccurate sensor data, such as that produced by 
ultrasonic sensors, as well as sensor fusion. 

1) Obtain sonar information from the sensor controller. 
2) Update the histogram grid. 
3) Create the polar histogram. 
4) Determine the free sector and steering direction. 
5) Calculate the speed command. 
6)  Comunicate with the low-level motion controller (send 

speed and steer commands and receive position update). 

REFERENCES 
[ l ]  

[2] 

R. C. Arkin, “Motor schema-based mobile robot navigation,” Int. 
J .  Robotics Res., pp. 92-112, Aug. 1989. 
J .  Borenstein and Y.  Koren, “A mobile platform for nursing robots,” 
IEEE Trans. Industrial Electron., vol. 32, no. 2, pp.158-165, 
1985. 
-, “Motion control analysis of a mobile robot,” Trans. ASME, 
J .  Dynamics, Measurement Control, vol. 109, no. 2, pp. 73-79, 
1987. 

[3] 

on an Intel 80386-based PC-compatible running t41 -, “Obstacle avoidance With ultrasonic sensors,” IEEE J .  
Robotics Automat., vol. RA4,  no. 2 ,  pp. 213-218, 1988. 
-, “Real-time obstacle avoidance for fast mobile robots,” IEEE 151 at 20 MHz, T = 27 ms. 
Trans. Systems Man Cybern., vol. 19, no. 5, pp. 1179-1187, 

[6] -, “Histogramic in-motion mapping for mobile robot obstacle 
avoidance,” IEEE Trans. Robotics Automat., vol. 7,  to be pub- 
lished, Aug. 1991. 

VU. CONCLUSIONS Sept./Oct. 1989. 

This paper presents a new obstacle-avoidance method for 
fast-running vehicles. This approach, called the vector field 



288 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991 

171 

181 

191 

1151 

1161 

1181 

1191 

~ 4 1  

1251 

-, “Real-time map-building for fast mobile robot obstacle avoid- 
ance,” presented at SPIE Symp. on Advances in Intelligent Systems, 
Mobile Robots V, Boston, MA, Nov. 4-9, 1990. 
R. A. Brooks, “A robust layered control system for a mobile robot,” 
IEEE J .  Robotics Automat., vol. RA-2, no. 1, pp. 14-23, 1986. 
R. A. Brooks and J .  H. Connell, “Asynchronous distributed control 
system for a mobile robot,” Proc. SPIE, Mobile Robots, vol. 727, 

3 .  L. Crowley, “Dynamic world modeling for an intelligent mobile 
robot,” in Proc. IEEE 7th Int. Conf. Pattern Recognition 
(Montreal, Canada, July 30-Aug. 2, 1984), pp. 207-210. 
- , “World modeling and position estimation for a mobile robot 
using ultrasonic ranging,” in Proc. IEEE Int. Conf. Robotics 
Automat. (Scottsdale, AZ, May 14-19, 1989), pp. 674-680. 
K2A Mobile Platform, Cybernation, Roanoke, VA, 1987. 
A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE 
J .  Robotics Automat., vol. RA-3, no. 3, pp. 249-265, 1987. 
A. M. Flynn, “Combining sonar and infrared sensors for mobile 
robot navigation,” Int. J .  Robotics Res., vol. 7, no. 6, pp. 5-14, 
Dec. 1988. 
W. S. Newman and N. Hogan, “High speed robot control and 
obstacle avoidance using dynamic potential functions,” in Proc. 
IEEE Int. Conf. Robotics Automat. (Raleigh, NC, Mar. 31-Apr. 

0. Khatib, “Real-time obstacle avoidance for manipulators and mo- 
bile robots,” in Proc. IEEE Int. Conf. Robotics Automat. (St. 
Louis, MO, Mar. 25-28, 1985), pp. 500-505. 
Y. Koren and J .  Borenstein, “Analysis of control methods for mobile 
robot obstacle avoidance,” in Proc. IEEE Int. Workshop Intelli- 
gent Motion Control (Istanbul, Turkey, Aug. 20-22, 1990), pp. 
457-462. 

pp. 77-84, 1987. 

3, 1987), pp. 14-24. 

[26] U. Raschke and J .  Borenstein, “A comparisson of grid-type map- 
building techniques by index of performance,” in Proc. IEEE Int. 
Conf. Robotics Automat. (Cincinnati, OH, May 13- 18, 1990). 
C .  F. Thorpe, “Path relaxation: Path planning for a mobile robot,” 
Carnegie-Mellon Univ. The Robotics Institute, Mobile Robots Lab., 
Autonomous Mobile Robots, Annual Rep., pp. 39-42, 1985. 

[28] C. R. Weisbin, G. de Saussure, and D. Kammer, “SELF-CON- 
TROLLED. A real-time expert system for an autonomous mobile 
robot,” Computers Mechanic. Eng., pp. 12-19, Sept. 1986. 
Y. Zhao, S. L. BeMent, and J .  Borenstein, “Dynamic path planning 
for mobile robot real-time navigation,” presented at 12th IASTED 
Int. Symp. Robotics and Manufacturing, Santa Barbara, CA, Nov. 
13-15. 1989. 

[27] 

[29] 

ning, real-time control, 

Johann Borenstein (M’88) received the B.Sc., 
M.Sc., and D.Sc. degrees in mechanical engineer- 
ing in 1981, 1983, and 1987, respectively, from 
the Technion-Israel Institute of Technology, 
Haifa, Israel. 

Since 1987, he has been with the Robotics Sys- 
tems Division at the University of Michigan, Ann 
Arbor, where he is currently an Assistant Research 
Scientist and Head of the MEAM Mobile Robotics 
Laboratory. His research interest include mobile 
robot navigation, obstacle avoidance, path plan- 

sensors for robotic applications, multisensor integra- - 

-, “Critical analysis of potential field methods for mobile robot 
obstacle avoidance,” IEEE Trans. Robotics Automat., submitted 
for publication. 
B. H. Krogh, “A generalized potential field approach to obstacle 
avoidance control,” presented at Int. Robotics Res. Conf., Bethlehem 
PA, Aug. 1984. 

tion, and computer interfacing and integration 

B. H. Krogh and C. E. Thorpe, “Integrated path planning and 
dynamic steering control for autonomous vehicles,” in Proc. IEEE 
Int. Conf. Robotics Automat. (San Francisco, CA, Apr. 7-10, 

R. Kuc and B. Barshan, “Navigating vehicles through an unstructured 
environment with sonar,” in Proc. IEEE Int. Conf. Robotics 
Automat. (Scottsdale, AZ, May 14-19, 1989), pp. 1422-1426. 
V. Lumelsky and T. Skewis, “A paradigm for incorporating vision in 
the robot navigation function,” in Proc. IEEE Conf. Robotics 
Automat. (Philadelphia, PA, Apr. 25, 1988), pp. 734-739. 
H. P. Moravec and A. Elfes, “High resolution maps from wide angle 
sonar,” in Proc. IEEE Conf. Robotics Automat. (Washington, 

H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” 
AI Mag., pp. 61-74, Summer 1988. 
POLAROID Corporation, Ultrasonic Components Group, Cambridge, 
MA, 1990. 

1986), pp. 1664-1669. 

DC), 1985, pp. 116-121. 

Yoram Koren (M’76-SM’88) has 25 years of 
research, teaching, and consulting experience in 
the automated manufacturing field. At present he is 
a Professor in the Department of Mechanical Engi- 
neering and Applied Mechanics at the University 
of Michigan, Ann Arbor. He has published over 
100 papers and three books on machine tool con- 
trol, robotics, sensing methods, and modeling of 
processes. His book Computer Control f o r  Man- 
ufucturing Systems (McGraw-Hill, 1983) is used 
as a textbook at maior universities and received the 

1984 Textbook Award for the Society of Manufacturing Engineering (SME). 
His book, Robotics f o r  Engineers (McGraw-Hill, 1985), was translated 
into Japanese and French and is used by engineers throughout the world. 

Prof. Koren is a Fellow of the ASME, an Active Member of CIRP, and a 
Fellow of SME/Robotics-International. 


