07/02/2012 Print Records

Accession number: 20110213572207

Title: A system for 3D autonomous rotorcraft navigation in urban environments

Authors: Tsenkov, Peter^{1, 3}; How lett, Jason K.^{1, 4}; Whalley, Matthew ^{1, 5}; Schulein, Greg^{1, 3}; Takahashi, Marc^{1, 6}

; Rhinehart, Matthew H.2, 7; Mettler, Bernard2, 7

Author affiliation: 1 Aeroflightdynamics Directorate (AMRDEC), U.S. Army Research, Development and

Engineering Command, Ames Research Center, Moffett Field, CA 94035, United States

² University of Minnesota, United States

3 San Jose State University, United States

⁴ Raytheon Missile Systems, Tucson, AZ, United States

⁵ U.S. Army Aeroflightdynamics Directorate, United States

⁶ Perot Systems, United States

7 Department of Aerospace Engineering, United States

Corresponding author: Tsenkov, P. (ptsenkov@mail.arc.nasa.gov)

Source title: AIAA Guidance, Navigation and Control Conference and Exhibit

Abbreviated source title: AIAA Guid., Navig. Control Conf. Exhib.

Monograph title: AIAA Guidance, Navigation and Control Conference and Exhibit

Issue date: 2008

Publication year: 2008

Article number: 2008-7412

Language: English

ISBN-13: 9781563479458

Document type: Conference article (CA)

Conference name: AIAA Guidance, Navigation and Control Conference and Exhibit

Conference date: August 18, 2008 - August 21, 2008

Conference location: Honolulu, HI, United states

Conference code: 83206

Publisher: American Institute of Aeronautics and Astronautics Inc., 1801 Alexander Bell Drive, Suite 500,

Reston, VA 20191-4344, United States

Abstract: Three-dimensional navigation will be an essential component of low-altitude unmanned

rotorcraft operations in urban environments. Successful navigation will require that the vehicle sense the surrounding obstacles, incorporate the data into its world model, and react to new obstacles to ensure both vehicle survivability and satisfactory completion of the mission objectives. A complete navigation solution built on heuristic planning concepts is presented. A fast A*-based 3D route planner is compared with one that constructs 3D routes by executing a 2D planner on plane slices of the terrain. Monte Carlo simulation evaluation and flight test

validation results are presented.

Number of references: 40

Main heading: Navigation

Controlled terms: Aircraft - Flight simulators - Helicopter rotors - Monte Carlo methods - Planning - Three dimensional -

Urban planning