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Abstract 
We are deueloping a system f o r  autonomous nav- 
igation of unmanned aerial vehicles (UAVs)  bused 
o n  computer v%sion. A U A V  is equipped with a n  on- 
board camerus and each U A V  i s  provided with noisy 
estimates of its own state, coming f r o m  GPS/INS. 
T h e  ,mission of the U A V  i s  1o.w altitude navigation 
f r o m  a n  initial position to  a final position in a par- 
tially knozlln 3-0 environment while avoiding ob- 
stacles and minimizing path length. We use a hi- 
erarchical approach to  path planning. W e  distin- 
guish between a global offline computation, based 
on  a coarse known model of the environment and a 
local online computation, ba,sed o n  the information 
coming from the vis ion system. A U A V  builds and 
updates a virtual 3-0 model of the surrounding en- 
vironmerLt by yrocessing image sequemes and fusing 
t h e m  .with sensor data. Based o n  such a model the 
UAV iui.11 plan a path f r o m  i ts  current position t o  
the terrrvinal point. I t  will then follow such path, 
getting more data f r o m  the on-board cameras, and 
refining map  and local path in real t ime.  

1 Introduction 
Without complete knowledge of the environment an 
agent can only plan a path which is optimal with 
respect to its knowledge at  the time of planning. 
Based on multiresolution environmental models we 
use a hierarchica,l approach to path planning, with 
different paths designed at  different time and space 
scales. Our approach takes its move from the work 
of Reissell and Pai [5], who propose a path plan- 
ning scheme based on multiresolution terrain rep- 
resentation. In our approach we divide the path 
planning in two parts: a global offline computa- 
tion, based on R coarse model of the environment 
and 21, local online computation, based both on the 
original model and on the information provided by 
the vision system. 

Our testbed is an Unmanned Aerial Vehicle 
(UAV). The UAV makes use of an a priori, inaccu- 

rate, gra.ph model of the terrain to plan an initial, 
coarse path. We use wavelets to filter the map to 
the desired level of abstraction. A few waypoints 
are selected based on the desired objective. At this 
level of abstraction we perform a global offline com- 
putation on the entire graph. Computation of op- 
timal path over the complete terrain model is very 
intensive. At this stage, the planning is performed 
deterministically. We use standard optimization al- 
gorithms for shortest path computation, such as 
Djikstru or A*. 

On the other hand, in-flight navigation mainly 
depends on the information gathered by the vision 
system. We propose a probabilistic approach to lo- 
cal online path planning, for a number of reasons: 
first of all, because of the inevitable uncertainty of 
measurements from the sensors: secondly, for the 
intrinsic uncertainty of an unknown surrounding 
environment; and finally, the structure of reasoning 
of any (biological or artificial) intelligent system is 
naturally probabilistic-whenever a decision has to 
be taken, the costs or gains that all possible choices 
imply are “weighed” in probabilistic terms, and the 
decision that is more “likely” to yield maximum 
gain is taken. 

The surrounding three-dimensional environment 
is divided into cells. Initially each of the cells is 
assigned with a probability of occupancy. We will 
call such probability function a “risk map”-a risk 
map value close to one indicates high risk (presence 
of an obstacle), while a value close to zero denotes 
low risk (no obstacle). Such an approach was in- 
troduced by Thrun [15]: in this work we extend 
it to three dimensional environments using vision 
rather than sonar sensors. The UAV is equipped 
with an initial knowledge of the surrounding envi- 
ronment through an a priori risk map assigned from 
the mission planner. However, such a risk map will 
be refined by the UAV during navigation exploit- 
ing seiisor data (i.e., multiple image sequences and 
state data containing UAV’s position, orientation, 
velocity, etc.). 

Processing multiple image sequences and inte- 
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grating such information with other sensor readings 
allows a UAV to estimate the distance between it- 
self and the obstacles, and provide a measure of the 
uncertainty of the estimate:; (in terms of error vari- 
ances). Using all past information in an “optimal” 
way, the UAV is able to refine its virtual map of 
the environment, and thus obtain a model that is 
more accurate and up-to-diite. 

Given a probabilistic model of the environment, 
path planning can be performed using dynamic pro- 
gramming techniques to plan a discrete path, as a 
sequence of adjacent cells. Each cell corresponds 
to a state of a stochastic transition system, and a 
cost is assigned to each stake transition. The final 
objective is to minimize the total expected cost. 

The next section will describe the system archi- 
tecture and model. Sections 3 and 4 will provide 
a detailed description of osir navigation algorithm 
for both ofline and online computation. The last 
section is devoted to concliision and comments. 

2 System Architecture 
Our testbed.is a helicopter-based UAV, part of a 
research project undertaken at UC Berkeley un- 
der the acronym of BEAR (Berkeley Aerobots) [I]. 
Compositional methods represent a natural way to 
reduce complexity of system design, by decompos- 
ing the problem into a sequence of smaller prob- 
lems of manageable comp (exity. Hierarchy allows 
to separate complex global task in a series of sim- 
pler, local ones. The helicopter is modeled as a 
hierarchical hybrid system. For a detailed discus- 
sion please refer to [14]. The system is inherently 
hybrid, having to combine continuous control with 
discrete logic. The heliclspter model consists of 
three components: the Flight Management System 
(FMS) which is responsible for planning and con- 
trolling the operation of the UAV. the vision system 
for the detection and investigation of objects of in- 
terest and the helicopter, i.e. the vehicle dynamics. 
The FMS consists of four layers, the strategic, tac- 
tical, and trajectory planners, and the regulation 
layer, as described in Figure 1. 

The Strategic Planner is concerned with the 
planning and execution cd the central UAV mis- 
sion. It designs a coarse, self-optimal trajectory, 
which is stored in form of a sequence of waypoints. 
Th& layer also takes care (of the transition between 
the points, by acknowledging the completion of a 
subtask and scheduling the next one. 

The Tactical Planner is responsible for local 
obstacle avoidance: it plans a discrete trajectory 
between the waypoints provided by the Strategic 
Planner and must modify it on-line in real time 
in case of appearance of new obstacles along the 
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Figure 1: System Architecture 

previously planned path. To do this, it makes use 
of data provided by the camera, GPS and internal 
sensors on position, orientation, linear and angular 
velocities. 

The Trajectory Planner interpolates the set of 
points into a continuous trajectory, that the lower 
layers of the system will have 1,o follow. Such trajec- 
tory will have to be trackable, i.e. compatible with 
the UAV’s dynamics. In safety critical situations 
the Trajectory Planner might overrule the behavior 
proposed by the Tactical Planner, and send to the 
system’s lower layers continuous trajectories that 
correspond to safety manceuvres. 

The Regulation Layer and the Dynamics 
Layer represent the continuous control part of the 
system. Their study is out o€ the scope of this pa- 
per, as is the one of the Trajectory Planner. We 
suggest reading papers [7] and [6] for a detailed de- 
scription of the system’s lower layers and various 
control designs. 

In the next section we shall describe our ap- 
proach to path planning. We design both a global 
offline and a local online navigation scheme. 

- 

3 Global Navigation: the 
Strategic Planner 

In 3D navigation the choice of an appropriate 
model for the surrounding environment is crucial. 
In our design we make extensive use of Digital El- 
evation Models (DEM) [ a ] .  Recent advances in 
laser technology have provided us with an exten- 
sive coverage of earth surface with extreme level of 
accuracy. The basic idea consists in gridding the 
surface and assigning an altitude to each cell in the 
grid. The gridding is up to l m  with accuracy in 
the range of centimeters. These models are widely 
used in Earth Sciences. In our approach we manip- 
ulate these models and use them at different levels 
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of resolution via extensive use of wavelet transform. 

3.1 The Wavelet transform 
Following the approach used in [5] we choose to 
perform a wavelet decomposition with the pseu- 
docoiflet family introduced by [13]. The wavelets 
properties (and those of the pseudocoiflets family in 
particular) that justify their use as opposed to other 
multiresolution filtering techniques are their Space- 
frequency localization, which provides local infor- 
mation arbout the smoothness of the data, and their 
natural hierarchical representation. Wavelets also 
provide the best possible approximation for contin- 
uo’us fiimctions in L2. The approximation error can 
be estimated precisely; the theorem of vanishing 
moments provides a way to relate the error to the 
properties of the mother wavelet. In the pseudo- 
coiflet case the number of vanishing moments is 4, 
therefore the error decreases as 241 as scale l in- 
creases (i.e. we examine the data at finer scales). 

3.2 Terrain analysis for flight plan- 
ning 

Using the classic wavelet notation we can write the 
wavelet decomposition of a one dimensional sig- 
nal as a repeated application of two finite filters 
H and G: 

N H H 
-5 - SI - s2 - . . .  

G G G 

1 
‘1u 1 W2 . . .  

where the sequences s1 and w1 are respectively the 
scaling a,nd wavelet coefficients at scale 1. Given the 
compleke set of wavelet coefficients wlj -where j in- 
dexes the position- reconstruction is performed U:- 
ing the corresponding biorthogonal filters H and G. 

For a two-dimensional signal the decomposition 
genera.tes three sequences that correspond to the 
horizontal, vertical and diagonal details of the irn- 
age, as shown in figure 2. 

Due to the pseudocoiflets properties the scaling 
coefficients form a sampling of approximation sur- 
face that is smoother than the original approxima- 
tion surfxe,  as shown in Figure 3.  

3.3 Algorithm and Results 
We employ Dzjkstra’s algorithm to find the shortest 
path on the transformed grid. Our cost function 
result from the sum of three factors, appropriately 
scaled. Every cell point has a cost associated with 
it: 

C ( i , j )  = %C,L(il  j )  + a2cdG.i) + a:WL( i , j ) ,  ( I )  

Figure 3: The Terrain at different levels of detail 

where cd, c,, ch are costs associated with distance 
to goal, roughness of terrain [ 5 ] ,  and flight altitude 
respectively. The coefficients ai will assign a par- 
ticular weight to each cost. The UAV will look for 
the shortest path on a smooth part of the terrain 
with low altitude. Figure 4 shows a typical out- 
come of this algorithm. In the figure the waypoints 
have been interpolated. 

Figure 4: Path on a DEM of La Honda, CA. 

4 Local Navigation: the Tac- 
tical Planner 

In this section we shall focus on the problem of 
vision-based local obstacle avoidance, which is the 
task of the Tactical Planner. We shall describe the 
strategy formulated by M. lLlicheli in [ll]. 

Given a set of waypoints, provided by the Strate- 
gic Planner, the Tactical Planner connects them 
with a discrete, finer trajectory] i.e. a set of control 
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Figure 2 :  Decomposition of altitude profile of La Honda, CA 

points in three dimensional space which will succes- 
sively be interpolated into a continuous, trackable 
trajectory by the Trajectory Planner (see Figure 1). 
We shall assume that the lJAV is provided with an 
on-board computer, one or more cameras, a GPS 
system and sensors that give instantaneous, noisy 
estimates of the agent's crientation in .space and 
(three-dimensional) linear and angular velocities. 

4.1 Bayesian Three-Dimensional 
Occupancy Grid Building 

The main idea the whole strategy is based on is 
splitting local space (i.e. a connected "neighbor- 
hood" of the two specific waypoints that we are 
considering) into three-diriensional cubic cells (see 
Figure 5). To each cell we associate a grid point,  
which is simply the center of a cell; grid G is the set 
of all grid points. We assume that the agent's initial 
position coincides with a specific grid point, which 
corresponds to the first of the two way points that  
were previously provided by the Strategic Planner. 
We also assume that the second waypoint coin- 
cides with another grid point. The Tactical Plan- 
ner's task is to provide a succession of adjacent grid 
points (or cells) that connect the agent's initial po- 
sition and the second waypoint, i.e. a discrete tra- 
jectory connecting the twci waypoints. Such trajec- 
tory will have to avoid locally detected obstacles, 
and must be modified on-line and in real time in 
case of abrupt environmerltal changes, e.g. the sud- 
den appearance of new ob:jtacles. Furthermore, the 
Tactical Planner should account for the constraints 
on the Trajectory Planner that will have to interpo- 
late the discrete trajectory into a continuous, track- 
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Figure 5: Two-dimensional example of grid: dots 
represent grid points and squares represent cells. 

able one, which will have, among others, curvature 
radius constraints. 

The Risk Map. Each cell may belong to one of 
two classes: occupied or not occupied by an obsta- 
cle; we shall indicate this class set as C = {occ, m}. 
Given a probability space S = (R, TI P ) ,  for each 
grid point Q E 6 we will consider C(Q)  as a random 
variable, i.e. a function C ( Q )  : R + C. Therefore, 
for all Q E G, C(Q)  has a pre-assigned probabil- 
ity of belonging to class occupied P[C(Q) E occ]; 
we'll call this function of Q the a priori  probability 
of occupancy. Its value will be suggested by the 
prior knowledge one has on the local environment: 
e.g. a value of 0.5 indicates no knowledge, or max- 
imum entropy (in the information-theoretic sense). 
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The agent continually receives new data about 
the local environment through its sensors, e.g. the 
on-board digital camera. We shall indicate with 
Dk(Q) the data vector relative to the k-th mea- 
surement at  point Q E 6. Dk(Q) : 0 -+ RN is a 
ran.dom vector; being a function of index k E Zf 
it can be viewed as an N-dimensional stochastic 
process. 

Define the A:-th risk m a p  as the following function 
of data: 

Rk(Q;  dk, . . . , dl) := 

P[C(Q)  = occ 1 Dk(Q) = 4,. . . ,Di (Q)  1 di] ; 

the risk inap associates to each grid point Q E 6 
the probability that the corresponding cell is oc- 
cupied by some obstacle, given all the first k mea- 
surements relative to that cell; a probability close 
to one indicates high "risk", whereas a value close 
to zero suggests the cell, according to the informa- 
tion we have, is "probably" free. Introducing the 
compact nota.tion: Dk(Q) := [ D k ( Q ) ,  . . . , Dl(Q)], 
dk := [dk, . . . , dl], the risk map definition may be 
rewritten as follows: 

R k ( Q ;  dk) := P [C(Q) = occ I Dk(Q) = dk] ; 

in particular, the risk map calculated at  k = 0 co- 
incides with the a pr%ori probability of occupancy: 
Ro(Q) = P [C(Q) = OCC].  

We will now study the evolution of the risk map 
(for growing values of time index k )  in function of 
the following conditional probabilities: 

P[C(Q) = occ 1 Di(Q) = di] , 1 5 i 5 k ;  (2) 

which we shall call risk map  updating funct ions (for 
reasons that will be clarified); they represent the 
probabilities of occupancy of the cell corresponding 
to Q given the value that the single measurement 
vector Di(Q) takes. We shall assume that mea- 
surements about a,ny single cell are conditionally 
independent given the state of the cell, i.e.: 

[Di(Q) E B i , .  . . ,D,(Q) E & I C(Q) = c]  = 
71 

= P [D,(Q) E I C(Q) = cl , ( 3 )  
, = I  

where {B l , .  . . , BT1} are arbitrary Bore1 subsets of 
RN and c E {occ, OC.} is the state of the cell corre- 
sponding to grid point Q. 

We shall now focus our attention on a partic- 
ular grid point, therefore we shall simply write 
&(dk) instead of Rk(Q;dk), P(occ) instead of 
P[C(Q) = occ], and P ( o c c ( d k )  instead of 
P[C(Q) = occIDk(Q) = dk]. It is possible to 

prove [ll] [15] that, given hypothesis (3), the fol- 
lowing risk map  updating law holds: 

(4) 

which has to be initialized setting Ro = P(occ). 
Clearly, function P(occ I . )  : RN + [0,1], i.e. the 
risk map updating function (its name is now jus- 
tified) plays a fundamental role. Such function is 
actually unknown; according to the nature of in- 
coming data (in our case, an image sequence and 
position/velocity information), it has to be approx- 
imated in some way. In other words, we have to 
build an appropriate function of data that approxi- 
mates the probability of cell occupancy after a sin- 
gle observation on the cell has been performed. 

Other authors have used the grid-based method 
for environment modeling, but always in two di- 
mensions, i.e. for indoor robot navigation [la] [15]. 
For example, Thrun [15] assumes the ground robot 
is equipped with an array of sonar sensors; he then 
constructs the grid map updating function through 
an artificial neural network, training it with exam- 
ples of sensor readings. As we will illustrate later 
on, we have found an analytic expression for the risk 
map updating function, which also accounts for un- 
certainties (noise) in our sensor readings (cameras, 
GPS, etc.). 

Remark. In implementing our strategy cell size 
is clearly a very important parameter. It should be 
chosen in accordance with the local environment's 
size, the type of the environment (i.e. the type 
and size of typical obstacles in the environment), 
the agent's size and the on-board computer's com- 
putational power and storage capabilities, keeping 
in mind that incoming data must be processed in 
real time. 

It is up to the engineer's experience and knowl- 
edge to choose an appropriate cell size. For exam- 
ple, making the grid too fine with respect to the 
size of the agent or the typical obstacles that are 
present in the environment simply wouldn't make 
sense, unless we could count on a very powerful on- 
board computer; on the other hand, making the 
grid too coarse would be an inefficient use of in- 
coming data.. 

4.2 Vision-based Risk Map Updat- 

Consider the geometric model illustrated in Fig- 
ure 6. The UAV is equipped with one on-board 

ing 
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Figure 6: Camera model. Body frame B = {O( t ) , e l ( t ) , e z ( t ) , e s ( t ) }  is attached to the camera in rigid 
motion. 

camera, that provides it with an image sequence; 
we consider a reference frame (body frame) in rigid 
motion with the agent (and the camera). As we 
specified at the beginning of this section, we assume 
that the UAV is also provided with noisy estimates 
of its position with respect to an inertial frame (by 
GPS) and its three dimensional linear and angular 
velocities, with respect to the body frame. 

We first developed an efficient multi-scale proba- 
bilistic algorithm [Ill for optical flow recovery (see 
also [8] ,  [SI); we then modified it to obtain a tech- 
nique that allows the simultaneous recovery of opt,i- 
cal flow and depth (see also [lo]) in an optimal wag, 
i.e. making the best use of all past data. The algo- 
rithm provides, for each pixel of the depth map, the 
corresponding error variance, i.e. a quantity that 
somehow measures the amplitude of depth estima- 
tion error (i.e. the reliability of our estimate). Such 
quantity is a function of all the incoming data error 
variances. 

The depth map provides information about the 
distance between the agent and the obstacles that 
appear on the image plane. Suppose we want to 
establish whether or not a cell is occupied by an ob- 
stacle, and that. P is the grid point corresponding 
to that cell (see Figure 6); knowing the grid point 
coordinates and being provided with the agent’s 
position (with respect to the inertial frame) it is 
possible to calculate the distance between the grid 
point and the agent, and to establish the projec- 
tion of point P onto the image plane (point P’ in 
Figure 6). Now, comparing such distance with the 

depth reported on the depth map at P’, one is able 
to establish whether point P i:; in front of, behind, 
or on the surface of an obstacle. Calling s the dif- 
ference between the value reported on the ,depth 
image at  P‘ and the distance between P and the 
agent, we have found [ll] the following expression 
for the risk map updating function:’ 

whose shape is reported in Figure 7; & is the a 
priori risk map value for the grid point we are con- 
sidering, [ is a parameter that is proportional to 
the typical depth of obstac1e:j in the environment 
we are navigating into (it has to be set off-line, be- 
fore navigation starts), and g‘’ is the error variance 
associated with s (defined above), which is a func- 
tion of all the incoming data error variances; a(.) is 
the normalized, zero-mean Gaussian distribution. 

Note that if s < 0 and 15) is sufficiently large 
(i.e. the cell is in front of the obstacle represented 
in P’ on the image plane) then we set the posterior 
probability of occupancy virtually equal to zero; if 
s 0 (the grid point lies on the obstacle’s sur- 
face) then we set such probability close to one; for 

lThe “hat” (-) we use here distinguishes the “real” risk 
map updating function P(occ(dk) (which is nothing but a 
mathematical concept) from the one we constructed from 
our sensor models, that we will use to update the risk map 
through updating law (4). 
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Figure 7: Shape of risk map updating function. 

growing va,lues of s (meaning that the grid point is 
behind an obstacle) then F(occ1dk) tends to the 
a pri0r.i probability of occupancy P(occ), which 
makes sense since we cannot have any information 
on the occupancy state of the cell, that is “hided” 
by an obstacle (note that if P(occ(dk) = P(occ) 
theii formula (4) yields RI, = &-I). The width of 
function (7) depends on both (depth of objects) 
and o2 (uncertainty in measurements). 

4.3 Local Path Planning using Dy- 
namic Programming 

Using function (5) and formula (4) the Tactical 
Planner is able to build and update the risk map. 
We will now briefly illustrate a novel algorithm [ll] 
that, given the risk map, provides a sequence of grid 
points (i.e. a discrete path) connecting the two way- 
points previously given by the Strategic Planner in 
a way that detected obstacles are avoided and path 
length is niiiiiinized; such algorithm is based on Dy- 
namic Prograinming techniques [3]. 

We associate a state to each grid point (i.e. state 
space S coincides with grid G),  and we assume that 
from aiiy statc we may move, in one step, to any of 
its 26 neighbors in the three-dimensional grid; let 
U be the 26-element control space. We now asso- 
ciate a cost function c : s2 x U -+ IW : (sz, s3; U )  H 

c(s,,s3; U )  to each state pair (sz,s3) (i.e. to each 
state transition) and control U. 

We will minimize, with respect to all possible 
control policies g : S + U ,  the total expected cost 

J g ( s )  := 
T N -  L 1 

where s is the starting state and 0 < cy < 1; the 
optimal policy is given by the unique solution to  
Bellman’s equation [3]. 

For our specific path-generation problem we de- 
fined cost as a linear combination of three (or more) 

terms. The first term is proportional to  the value 
the risk map assumes in state s, (if such value is 
higher than a certain threshold, say 0.8, then cost 
is set to a very high value, or infinity); this way tra- 
jectories that avoid obstacles will have a lower cost. 
The second term is proportional to the length of the 
path connecting states s ,  and sg, so that  globally 
shorter paths will have a lower cost than others. 
The third term associates a lower costs to states at 
a certain altitude from ground, so that the agent is 
pushed to fly at those altitudes rather than at more 
costly ones in order to  achieve a lower total cost. 
Finally, we could assign a gain (a negative cost) to 
those areas where the risk map assumes values that 
are close to 0.5 (maximum entropy), i.e. unknown 
areas; thus the agent would be attracted towards 
unexplored areas -such exploration might yield 
useful information about obstacle presence (or ab- 
sence), and allow the Tactical Planner to generate 
a “better” path.2 In fact, cost is the translation 
into mathematical terms of the task we want our 
agent to perform; for example, if we wanted our 
agent to reach its destination along a known tra- 
jectory (and avoid obstacles at the same time) we 
would just need to add to our cost function a term 
that is proportional to the distance between each 
state and the fixed trajectory. 

The theory of Dynamic Programming provides 
fast and efficient techniques for finding approxi- 
mate solutions to Bellman’s equation (which is non- 
linear), such as the value iteration and the policy 
iteration methods, which we successfully applied 
to our specific problem. Through computer sim- 
ulation, we were able to obtain (in real-time) dis- 
crete trajectories connecting the first waypoint to 
the second one, that avoided obstacles and, at the 
same time, minimized global path length. 

5 Conclusions & Future Work 
This paper reflects a new attempt to address the 
problem of vision based autonomous navigation in a 
partially known environment. Offline computation 
exploits the a-priori knowledge about the environ- 
ment, providing an initial guess about the optimal 
route. Online computation exploits the informa- 
tion provided by the vision sensor, capable of sens- 
ing the environment. The choice of a probabilistic 
sensor model and, as a consequence, of a probabilis- 
tic online path planning scheme is, according to the 
authors, the most appropriate to capture the nat- 
ural uncertainty typical of every sensing process. 

2This situation is referred to as e~~ploration-e~~ploztatzon 
tradeofl, where the first term refers to exploitation of cur- 
rent information while some exploration could increase such 
knowledge in order to plan a better path. 
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Multiresolution via wavelet transform allows to 10- 
calize the level of accuracy required to minimize 
collision probability, making the approach scalable 
with respect to the size of the map. Future work 
will include further simulatiojn; implementation and 
testing of the navigation system on an autonomous 
helicopter within the BEAR project at UC Berke- 
ley [11. 
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