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Abstract In this paper a vision-based approach for guidance and safe landing of an
Unmanned Aerial Vehicle (UAV) is proposed. The UAV is required to navigate
from an initial to a final position in a partially known environment. The guidance
system allows a remote user to define target areas from a high resolution aerial
or satellite image to determine either the waypoints of the navigation trajectory
or the landing area. A feature-based image-matching algorithm finds the natural
landmarks and gives feedbacks to an onboard, hierarchical, behaviour-based control
system for autonomous navigation and landing. Two algorithms for safe landing
area detection are also proposed, based on a feature optical flow analysis. The main
novelty is in the vision-based architecture, extensively tested on a helicopter, which,
in particular, does not require any artificial landmark (e.g., helipad). Results show
the appropriateness of the vision-based approach, which is robust to occlusions and
light variations.
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1 Introduction

A helicopter is a well-suited air vehicle for a wide variety of operations, ranging
from search and rescue (e.g., rescuing stranded individuals or launching life buoys at
drowning people) to surveillance and inspection missions (e.g., landmine detection
or inspection of towers and transmission lines for corrosion and other defects). All
these applications demand dangerous flight patterns in close proximity to the ground
or to other objects that can attempt to the pilot safety. Additional hazards derive
from operations in dangerous or contaminated areas, e.g., inspection after chemical
or nuclear accidents. An unmanned helicopter that operates autonomously or is
piloted remotely will eliminate these risks and increase the helicopter’s effectiveness.
Typical missions of autonomous helicopters require flying at low speeds to follow a
path or hovering near an object. Positioning equipments such as Inertial Navigation
Systems (INSs) or Global Positioning Systems (GPSs) are well-suited for long range,
low precision helicopter flights and fall short for very precise, close proximity flights.
Manoeuvring helicopters close to objects requires accurate positioning in relation to
the objects. Visual sensing is a rich source of data for this relative feedback.

Unmanned Aerial Vehicles (UAVs) constitute a research field that has been
extensively explored in the last decade [1]. In literature a wide range of studies on
autonomous helicopters has been reported: modelling and identification, simulation,
sensor integration, control design and fault diagnosis [2–5].

The use of computer vision as secondary or primary method for autonomous
helicopter control has been discussed frequently in recent years, since classical
combination of GPS and INS systems can not sustain autonomous flight in any
situation [6, 7]. Several studies have demonstrated the effectiveness of approaches
based on motion field estimation [8] and feature tracking [9] for visual odometry.

A global view of the main aspects related to the research field of computer vision
for UAVs can be found in [10], along with the results of applying these techniques
in several applications. In [11] Caballero et al. propose a work on visual odometry
based on geometric homography. They use vision to compute a frame by frame
odometry for Simultaneous Localization And Mapping (SLAM). A cooperative
vision-based system for detecting and tracking objects of interest on or near the
ground is presented in [12].

Vision based methods have been proposed even in the context of autonomous
landing management: in [13] Merz et al. utilize inertial sensors combined with a single
camera and a specially designed landing pad in order to be independent from GPS;
in [14] Daquan and Hongyue estimate all the motion parameters of the aircraft are
obtained by exploiting images of an airport runway lighting acquired by the airborne
camera. The problem of how to land a helicopter in unknown terrain is tackled in
[15]. A combination of feature tracking, motion estimation, and multi-frame planar-
parallax obtained by a stereo rig is utilized in order to estimate a digital elevation
map of the terrain, allowing the determination of a safe landing area of terrain and
map waypoints to a desired landing spot.

In general, we can say that the degree of autonomy that an helicopter can achieve
depends on factors such as the ability to solve unexpected critical situations, e.g., loss
of GPS signal, and the ability to interact with the environment, e.g., using natural
landmarks. A vision-based solution for autonomous waypoint navigation and safe



J Intell Robot Syst (2010) 57:233–257 235

landing on unstructured terrain represents a strong improvement for both these
abilities. Several techniques have been implemented, decoupling the problem of
locating and tracking a high contrasted, well known landmark, e.g., a classical helipad
that can be easily identified by standard image processing techniques [16–18], from
the problem of detecting and avoiding natural obstacles, e.g., steep slopes and rocks
on a landing area [19–21]. The dependence on fixed, artificial landmarks and on
optimal visibility conditions constitutes a strong limit for visual-based navigation in
real-environment applications. In some works vision approaches based on moment
descriptors are used; they impose no constraints on the design of the landing pad
except that it should lie on a two dimensional plane, but artificial landmarks com-
posed by polygons are indispensable [17]. Moreover the weakness of that strategy
appears in situations in which natural (e.g., due to debris or leaves) or artificial (e.g.,
due to engine smoke) occlusions can make the computation of moment descriptors
very difficult.

In this paper a vision based approach for guidance and landing of an UAV is
proposed. Differently from previous works in this field this paper presents a vision-
based system for guidance and safe autonomous landing of a helicopter based on
the concept of reuse of local features extracted from the vision system. The vision
based architecture, better described in Section 3, is novel and even if presented here
in the case of helicopter navigation and landing, can be applied to any UAV, even
fixed wing vehicles. The general idea is to guide the UAV using natural landmarks
only, which can be selected from aerial images of the operating area. Such images can
be already available before or just acquired during the flight. The features extracted
from the natural landmarks can be chosen as navigation targets allowing a vision-
based feature tracker to compute the references for the flight control.

The main aim of such approach is to provide a remote operator with an intuitive
and direct control system, exploiting the benefits deriving from the use of visual
information, which constitutes the friendliest interface for an operator to interact
with the environment. Through the video stream the operator is able not only to
supervise but even to directly lead the operations, assigning the desired navigation
targets. Manoeuvres are then managed by the on board control system.

The main advantage of this approach consists in computing the displacement
relatively to the target rather than through a coordinate system fixed to the earth.
This approach becomes particularly useful in all those situations in which GPS signal
is not available (e.g., when operating in urban like environments or in case of fault)
or target coordinates are unknown. Moving the UAV using the visual feedback that
the operator receives from the on-board camera can be really useful when the path
can not be planned before, as during search and rescue or investigation missions.

In the case of landing on unstructured areas the ground is analyzed to verify if the
area is flat and proper for landing, since Digital Elevation Map (DEM) resolution can
not guarantee the possibility to identify a flat and safe target area. The landing task
is managed by the vision system through the localization of the geometrical centre of
mass of the matched features. Appropriate feedbacks are given to the autonomous
landing control system.

In this paper studies have focused on the problem of natural landmark detection
and recognition and safe landing area detection, which, as said before, are the main
novelties of the paper; for this reason we focused results on the vision based methods,
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leaving a minor space to the validation of the control system. Results show the
appropriateness of the vision based approach, which is also robust to occlusions,
light variations and scene changes (i.e., reference images grabbed in different days
and hours).

The organization of the paper is as follows. In Section 2 the problem of locating,
tracking and inspecting an assigned landing area is formulated. In Section 3 the
vision approach, a feature-based image-matching algorithm, is presented. Section 4
describes the hierarchical behaviour-based control architecture. Section 5 presents
the results achieved. Finally in Section 6 concluding remarks and directions for future
improvements are discussed.

2 Test-bed and Experimental Task

The experimental test-bed HELIBOT is a customized Bergen Twin Observer. It is
a twin-cylinder, gasoline-powered radio-controlled model helicopter approximately
1,5 meters in length and capable of lifting approximately 9 kg of payload. Onboard
avionics include a PC/104-based computer stack running the QNX RTOS (800 MHz
PIII CPU with 256 MB DRAM and 256 MB flash disk), a GPS-41EBF3V receiver
with WAAS and EGNOS (available in Europe) corrections and a Microstrain
3DM-GX1 Attitude Heading Reference System (AHRS). The helicopter is also
equipped with a downward-pointing Nikon camera. The ground station is mainly
constituted by a laptop, used to send high level control commands to the helicopter
as well as displaying telemetry from it. Data are sent using an advanced radio
modem that transmits and receives on the 868 MHz band. Autonomous flight
is achieved using the hierarchical behaviour-based control architecture presented
in Section 4.

The testing of algorithms was largely performed using a simulation framework
developed by our research group. The framework is provided with a customizable
HELIBOT model, allowing an easy switching from simulated to real tasks.

As shown in Fig. 1 four operating modes are proposed for the high level control
system. The approach to the operating area is managed with the aid of GPS infor-
mation. The user gives to the system the waypoint coordinates and the helicopter is
autonomously guided to the goal. Then the operating mode is switched and vision
system enters into the control loop. The user analyzes a high resolution image of
the area and selects a target. The system extracts the appropriate features from
the target image to define a natural landmark and starts to search it in the image
sequence coming from the onboard camera. Once features are detected and tracked,
the system uses the image location of these features to generate image-based velocity
references to the low level attitude and height controllers.

In the case of a programmed landing, the vision-based controller pilots the
helicopter over the landing area and manages the landing. If the landing area is
unknown, an appropriate analysis is performed to select the nearest flat area for a
safe landing.

Figure 2 shows the flying area in which experimental tests have been carried out.
The vision algorithm is described in the next session.



J Intell Robot Syst (2010) 57:233–257 237

Fig. 1 Control system operating modes

3 Vision Based Approach

The main difficulty to attain fully autonomous robot navigation outdoors is the
fast detection of reliable visual references, and their subsequent characterization
as landmarks for immediate and unambiguous recognition. The vision approach
presented here following is based on the concept of natural landmark. This system
allows a user to control the robot choosing the navigation target in the images
received from an on-board camera or from a high resolution aerial or satellite image.
This form of navigation control is convenient for exploration purposes or when there

Fig. 2 The “Gruppo Aeromodellistico Rio Ete” flying area
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is no previous map or knowledge of the environment, situations in which systems like
GPS, even if available, become useless and can be discarded. The user can decide the
next target for the robot and change it as new views of the environment become
available. This vision based navigation approach was also used to locate a landing
area and to allow autonomous landing by giving feedbacks to the UAV control
system.

Figure 3 depicts this concept, underlining the key idea that any high level
task relies on the same features extracted at the lower layer. This ensures time
performances of the whole approach and the chance of choosing different feature
extractors, following research developments in computer vision, but not depending
on a single approach.

The vision based system performs also a scene analysis to obtain a first rough
classification of the safe landing area. All elaborations are based on the same feature
set extracted from the current image and elaborated for different purposes: naviga-
tion, waypoint identification, landing area detection, safe landing area classification.
Processing is based on high level analysis of point features, which in this approach are
extracted using SIFT [22], but that could be extracted using any feature extraction
algorithm able to detect stable points and to provide a robust descriptor.

3.1 Feature Detection for Natural Landmark Tracking

The system should be able to detect natural landmarks in unstructured outdoor
environments while the robot is operating. These natural landmarks must provide
reliable matching results. To overcome the inherent difficulties with matching images
of an object or a scene captured outdoor during motion, the description of landmarks
must be based on invariant image features. These features must be distinctive
and invariant or partially invariant to translation, rotation, scale, 3D camera view
point and outdoor illumination conditions. Furthermore, robustness to image noise,
occlusion, background changes and clutter should be granted while maintaining near
real-time feature extraction and matching performance.

To solve all the discussed aspects an improved version of the Scale Invariant
Feature Transform (SIFT), developed by Lowe [22, 23] is used. SIFT is invariant
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Fig. 3 The vision based architecture
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to image translation, scaling and rotation. SIFT features are also partially invariant
to illumination changes and affine 3D projection. These features have been widely
used in the robot localization field as well as many other computer vision fields. SIFT
features are distinctive and invariant features used to robustly describe and match
digital image content between different views of a scene. While invariant to scale
and rotation, and robust to other image transforms, the SIFT feature description of
an image is typically large and slow to compute. Our improvements, better described
in [24, 25] consist of two different steps:

1. Divide the image in different sub-images;
2. Adapt SIFT parameters to each sub image and compute SIFT feature extraction,

only if it is useful.

During the first step, the image is divided into several sub images according to
its resolution. The number of scales to be computed is also decided. The image is
doubled at the first step of the SIFT algorithm. During the second step the following
threshold value (Tr) is computed to define the contrast threshold value of the SIFT
algorithm.

Tr = k ·

DimX,DimY∑

i, j=0

∣
∣
∣I

(
xi, y j

) − I
(
xi, y j

)∣∣
∣

DimX · DimY

In the previous expression k is a scale factor, DimX and DimY are the x and y
image dimensions, I(x,y) is the intensity of the gray level image and I (x, y) is the
medium intensity value of the processed image. In the Lowe’s SIFT implementation
the contrast threshold is statically defined and low contrast key points are rejected
because they are sensitive to noise. To speed up the feature extraction every sub-
image that has a very low threshold value is not computed because of the high
probability of not finding features in an almost constant image region (i.e., extreme
detection algorithm will fail). Further details of the used approach can be found in
[24, 25].

This method is also known to be robust to partial occlusions, such as those caused
by engine smoke (Fig. 4) and can obtain time performances comparable with other
fast feature extractors; in particular our experiments demonstrated that the system
was able to elaborate five frames per second using a 320 × 240 pixel image series.

The matching of a natural landmark in an image is then refined using the
computation of the centre of mass C of a subset of matched features; relying on the
assumption that a single landmark is present in each image, we analyze the group of
features by calculating the cluster that minimizes the relative distance of the 80% of
the total number of features.

This ensure that isolated false matches, usually far from the landmark centre,
are deleted in the computation of C, whose coordinates (xc, yc) are finally used as
feedback for the landing control system.

The metric used to compare feature descriptors is a classic Euclidean distance and
some heuristics (i.e., discard frames with only few features extracted, etc.).

At the present state of our research we do not perform a real feature tracking,
but we simply evaluate feature matching between every frame and the set of way
points or landing areas. Here following we often name this methodology landmark
detection and tracking.
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Fig. 4 Typical occlusions caused by engine smoke; camera is mounted on the bottom of the UAV
and it points the terrain

3.2 Optical Flow for Safe Landing Area Classification

Surface reconstruction can be defined as the process of inferring a mesh of intercon-
nected points representing a three-dimensional surface. The surface is often assumed
to be rigid and fixed. Computer vision systems ideally would like to be able to
reconstruct objects or environments from a sequence of pictures.

In the UAV application presented in this paper we are interested only in depth
estimation to determine if the landing area is safe for landing.

To reach this purpose we use two different approaches, based on typical helicopter
movements. The first case assumes that images are taken at a constant height and
with a pure translational motion; this restriction can be overcome since the control
system can assure those flight conditions during landing area inspection. The second
approach assumes that the helicopter is approaching the landing phase and is moving
maintaining the position and decreasing the altitude to complete a pure vertical
landing; also in this case we use the feature-based vision system to inspect the landing
area relying on the same set of local features. This motion is quite typical too and can
be easily managed by the control system.

In the first case we use an optical flow for depth perception that allows safe
autonomous landing. The system is based on feature-based surface reconstruction
using an optical flow computation. This approach chooses image features that are
stable for large motions. Thus, a sparse set of very confident depth estimates is
obtained. If the surface is considered quite stable the area is used for the autonomous
landing maneuver.

First, an image sequence of the target landing area is taken by the camera mounted
on the UAV and the SIFT features are used to estimate the optical flow in two
successive frames; then, structure (in particular depth) information of target landing
area relative to UAV is recovered; finally, a simple classifier based on a binary
threshold is used to decide if the surface has variable depth or not and, consequently,
if it can be used as a landing area.

Experiments using both computer simulated images and real video images demon-
strate the correctness and effectiveness of our method. In detail, the optical flow
vector field is evaluated using a simplified approach: the optical flow is computed on
the base of SIFT features that have been matched in two consecutive frames captured
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by the UAV during a translational flight over the area. Translational optical flow is
then filtered on the base of the flow vector orientation and, finally, a computation of
the variance of the optical flow module is performed to measure surface flatness.
A binary threshold is used to define if the surface is suitable or not for safe
landing of the UAV. The threshold adopted is now experimentally determined.
A specific study is planned to relate it to some parameters to obtain a dynamic
estimation.

Feature extraction and matching algorithms as SIFT are useful to estimate the
flatness of a surface especially in translation conditions as above introduced. If Fk ={(

xi, yi, x̂i, ŷi
)}

, i = 1, . . . , Nk is the set of Nk features at step k formed by quadruples
of matched features, we estimate the flatness of surface applying a simple assumption.

Assumption 1 If a vehicle is moving with pure translational motion, the flatness of
beneath surface is calculated by comparing the variance of distances between two or
more sets of matched features; low variance corresponds to safe areas, while great
variations are typical of unsafe regions.

We define di
k = ∥

∥(xi, yi) − (
x̂i, ŷi

)∥
∥

jas the distance (norm j, with j = 2) between
two matched features at step k; the flatness of “surface” is calculated as:

f latnessk = std

(
Nk∑

n=1

dn
k

)

where std is the standard deviation operator applied to a set of data. The classifier is
a binary threshold on the flatnessk value, which operates in the following way:

f latnessk =
{

safe if < T
unsafe if ≥ T

The T threshold is calculated by a supervised training phase, where a human operator
classifies a set of well known images as safe or unsafe; this procedure is simple
and requires a little spent of time. Other approaches under development focus on
a different calculation of T using fuzzy classifiers, which allows to represent the
uncertainty; T can be also time-varying, adapting to the number and quality of
features extracted.

Some considerations are suitable for clarity. The use of SIFT features is a reason-
able proposal since they have been previously extracted and used also for matching.
No additional computational load is required. A restrictive hypothesis assumed in
the proposed approach concerns the necessity of images taken at a constant height
and with a pure translational motion, but this restriction can be overcome since the
control system can assure those flight conditions during landing area inspection. The
threshold used for classification is now experimentally determined. A specific study
is planned to relate it to some parameters in order to obtain a dynamic estimation.

In the second case (vertical landing) we compute a graph of distances between
every feature couple and compare, frame by frame, the variation of this array of
distances, trying to evaluate the presence of a constant increase of variation, stable
over the entire image. This computation is based on the hypothesis that geometric
linear zooming over a flat surface brings to constant distance variations. For this



242 J Intell Robot Syst (2010) 57:233–257

reason we compute the variance of the variation vector as a measure of the previous
explained heuristic. High variances bring to the classification of unsafe areas, while
very low variance gives us a feedback of the flatness of the landing area. From
another point of view this method evaluates a kind of radial movement of features
while the helicopter is landing vertically; it is the same case of a zoom aligned with the
centre of the image that enlarges every object in the figure. This heuristic evaluator
is very quick, even if not exact, due to the possible presence of false feature matches.

An assumption also made in this heuristic surface classification method is the
fact that a quite large number of features is extracted almost uniformly from the
current helicopter view; the assumption is not restrictive in any of the feature
extraction methods here proposed because, usually, they are able to extract hundreds
of features.

Here following a short meta code description of the approach is proposed.

3.2.1 Slope Detection Algorithm

– search for feature matchings in a pair of consecutive images;
– calculation of distances among features in the first image (D1 matrix);
– calculation of distances among features in the second image (D2 matrix);
– detection of wrong matchings (if d1i,j > d2i,j);
– filtering of inconsistent data;
– calculation of normalized variations in distances among features;
– calculation of mean and the variance of the previous results.

The two methods bring to a correct and conservative classification of the area,
choosing only flat surfaces as safe areas. Results, even if preliminary, show the
feasibility of the proposed method. Time performances of the algorithm are good
because it does not add time consuming evaluations to the feature extraction process.

4 Control Strategy

Unmanned Aerial Vehicles, in particular helicopters as HELIBOT, are complex
flying machines. The mathematical model of a reduced scale helicopter has been
deeply studied during last years [26]; the various proposed approaches require a
large set of well-known parameters (e.g., geometrical, aerodynamic, mechanical)
that in the real case are estimated or measured [27]. Simulation environments are
useful tools that support the design process of control laws and task management
[27]. Given an accurate model of system, simulations assure to save time and money,
due to the high costs of UAVs. The introduction of a vision sensor that aids the
autonomous navigation and landing requires the development of a hierarchical
control architecture. The use of a hierarchical control structure is a widely adopted
approach in UAV [28–30], that allows to de-couple the two main aspects:

– High-level control, represented by strategy and task management,
– Low-level control, which translates the assigned behaviour to actuator

controllers.

Each level is supported by a set of sensors and/or actuators. In Fig. 5 a graphical
representation of hierarchical structure implemented in HELIBOT is shown. The
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Fig. 5 The hierarchical structure allows to de-couple problems, solved at different level by
specialized modules

vision sensor is used to track features of interest in the field of view. For improving
the robustness to loss/degradation of GPS signal, information retrieved by the com-
puter vision algorithms is fused with position data obtained by GPS (with EGNOS
corrections) and inertial data by AHRS.

The top level is represented by Mission/Task(s) Assignment module, where the
interaction between UAV and human operator is maximum. Task management is a
part of Flight Management System (FMS) [27] and generates the path to accomplish
a specific task. The last level manages the control of actuators. The complexity
of mathematical model of helicopter justifies the use of model-free controllers. A
triple nested PID control scheme has been implemented for HELIBOT as shown
in Fig. 6.

As stated in the previous section, where the vision-based approach has been
presented, to locate the landing area or to explore a zero-knowledge area, common
approaches can fail due to non-robust techniques (e.g., scale, rotation, change of light
conditions, point of view). The use of landmarks, natural or artificial, gives the Task

Fig. 6 The nested PID controllers scheme separates the problem of minimizing position error
assuring moderate speed when error is high and low speed when the error tends to be small
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Management module the capability to control the vehicle even in presence of faults,
such as loss/degradation of GPS signal. The question is when and how to switch
from the standard behaviour, basically driven by standard sensors, to the vision aided
behaviour. The challenge is to ensure the stability during the switching. Simulation
stages are useful to predict the dynamics of helicopter during the switch.

4.1 Switching Control Strategy by Behaviour

Switching control is a common approach when one controller is not sufficient to
cover the dynamics of a plant/process. A set of controllers tuned on a particular
operational condition often guarantees better performance in terms of precision
to external references and robustness to change of parameters. In the considered
case, the switch occurs when there is a change of task. Standard controllers used
for navigation are not suitable for fine tuning, as required in the landing task. In
fact, during navigation high accuracy and precision in terms of position, velocity and
attitude are not required, while in a critical task as landing a high accuracy on position
is required and the use of dedicated sensors as vision systems and range finders (e.g.,
laser or sonar) becomes necessary.

In Fig. 7 the proposed switching architecture for attitude is shown. The structure
of the tail controller and the engine power is similar, but is not reported here
for the sake of brevity. The main difference from the control scheme of Fig. 6 is
the introduction of a supervisor and a vision based controller. The supervisor acts
switching the controller, taking into account that a switching condition must be
satisfied to avoid the loss of stability. References from the vision based controller
are imposed without velocity loop because the speed in this phase is low.

Switching Condition A switching at time k can occur if and only if speed (transla-
tional and angular) tends to zero.

The condition is a bit conservative, but it is reasonable in the context of landing
or low speed feature tracking. The advantage of low speed during transition is the
reduced magnitude of bump between old references and new ones. The vision based

Fig. 7 Switching architecture for fine tuning tasks as landing or low speed features tracking
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controller provides fine planar alignment between helicopter and features found in
the landing area and height over ground is also regulated. The vision based controller
acts as a quasi-proportional controller, as shown in Fig. 8, where a dead zone is
introduced to overcome chattering problems induced by small oscillations around
the equilibrium. Saturator levels, both for maximum and minimum changes, avoid to
impose dangerous references (e.g., high values in collective can cause the overturn
of helicopter).

An integral action with saturation can be added to increase the steady state
precision in terms of position error. A more complex scheme that makes use of fuzzy
rules is under development.

4.2 Ground Effect Estimation during Low Height Flights and Landing Flights

Ground effect is an aerodynamical effect that turns significant when the helicopter
flights at altitudes that are comparable with the main rotor span. The main effects
related to this phenomenon are a significant increase of lift and a reduction of
induced velocity. The problem is well known and deeply investigated especially after
First World War, when the military forces understood the tactical importance of
helicopters due to the hovering feature of these vehicles.

During the last period many approaches have been proposed to precisely model
the unsteady aerodynamics of rotorcraft In Ground Effect (IGE). Several depen-
dences (e.g., blade loading, blade aspect ratio, twist) are weak and not significant
for control purposes. Well-known simple models bind the rotor span normalized
altitude (height / rotor span) with an increase of thrust or, alternatively, a reduction
of induced velocity. In Fig. 9 the behaviour of T/Tinf ratio is reported, where Tinf is
the thrust out of the ground effect.

Taking into account the ground effect, the altitude controller is improved in-
troducing the dynamics of thrust when the helicopter is approaching to ground.
Following the control scheme previously introduced (Fig. 6), two controllers must be
revised: the collective controller and the engine gas controller. They are responsible
of varying the helicopter altitude when the attitude is proximal to zero. The gas
controller tends to maintain the same main rotor speed �MR and the collective
controller is varied to control the thrust. In the case of IGE, a gain scheduling

Fig. 8 Transfer function
between input from vision
algorithms (difference �x in
position along an axis between
helicopter and target) and
variation �u of attitude
reference
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Fig. 9 The considered ground effect on thrust

approach is used to tune in real time the controller gain. In this condition �MR is
lightly reduced owing to the increase of lift. Gain is expressed by:

�

K = K (αkG) 0 ≤ α ≤ 1

where K is the nominal gain value in the case of Out of Ground Effect (OGE), α a
weighting factor and kG is related to the variation of lift, calculated at each step by
the following formula:

kG = 1

0.9926 + 0.03794
(

2R
z

)2

A graphical representation of gain scheduling approach in Fig. 10 is shown. Gain
scheduling can be applied to both collective and gas controllers.

Fig. 10 Gain scheduling applied to PID that controls the collective to contrast the ground effect
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5 Experimental Tests

This section is organized as follows: first, results about simulations of the control
system using the visual feedback as input in a virtual scenario are presented. Then,
simulation results of ground effect during low height flights and landing flights
are described. Finally, the visual feedback is evaluated using a real scenario and
presenting results about the navigation and landing, taking into account also the safe
landing area detection.

5.1 Simulation of Vision Sensor Feedback in a Virtual Scenario

As mentioned above, simulation is needed to evaluate the behaviour of the heli-
copter in transition stages. All the simulations have been carried out on a complete
MATLAB/Simulink model. The virtual scenario shown in Fig. 11, developed in
VRML, allows to increase the reality of simulation.

In this case, it is possible to simulate dynamically a vision sensor exploiting the
camera property of VRML. More complex scenarios with real textures can be also
used to stress the system more. All other sensors as GPS and AHRS are integrated
in the developed simulator, allowing a full test of the system. Vision algorithms,
based on feature extractors and matching, run synchronously with the simulation
of helicopter’s dynamics.

Fig. 11 a the initial frame when the vision system detects features of interest as helipad or other
known structures; b tracking is active and the helicopter performs fine tuning to reach the target;
c the helicopter attempts to reduce height over ground; d simulated scenario in VRML
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Fig. 12 Graphical representation of position along x,y,z axes

In Figs. 12 and 13 the results of a simulation in the developed multi-agent simu-
lator are shown. The simulation shows a switch from normal behaviour (waypoint
following) to landing in a safe area detected by the vision algorithm.

Switching is not critical because the relevant change involves the heading of the
helicopter as shown in Fig. 13; a low speed transition, which guarantees stability, is
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Fig. 13 3D graph of trajectory followed by the helicopter during the mission; the switch introduces
a singularity only in the change of orientation along the yaw axis, which does not imply a loss of
stability
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maintained as required. Switch is triggered by the vision controller that detects the
landing area; this high level information is then used by the supervisor, which takes
the decision to switch from standard to vision-based control.

5.2 Simulation of Ground Effect during Low Height Flights and Landing Flights

In Figs. 14, 15 and 16 results for an interesting scenario are presented. The scenario
is characterized by the presence of a switch that simulates a trigger from the vision
sensor system to start an emergency/urgent landing in a safe area. Then the helicopter
quickly reduces the altitude and receives the command to flight at very low altitude
(0.25 m) to test the performance of the controller during the IGE hovering.

The helicopter switches from standard navigation (as shown with red line in
Fig. 16) to landing task; in the last phases the rate of descent is low according to
desired behaviour. Ground flights are suitable for special tasks as mine detection,
where the helicopter is equipped with a Synthetic Aperture RADAR (SAR); in

Fig. 14 Trajectory of helicopter during entire mission
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Fig. 15 Diagram of positions (horizontals and vertical); bottom graph reports the trend of corrective
factor to contrast the ground effect

this case it is essential that the distance (also speed) between antenna and ground
is minimal.

5.3 Vision Results in Real Scenario

For the vision part, images with 320 × 240 pixels and shot by a Nikon camera
are used. These images can be processed at five frames per second. In the case
of autonomous landing this is also the frequency of the feedback input to the
control system. The vision system has been tested in different situations: the tracking
of a natural landmark for waypoint based navigation, the landing using a natural
landmark and giving a feedback to the control system, the detection of a safe landing
area.

Figures 17 and 18 show the matching between the frames while the UAV is flying
over natural landmarks. This test was performed to show the robustness of the vision
system when the UAV is far from the landmark and is moving at high speed. Blue
lines are the results of the feature matching used to track the waypoints. In Fig. 17
is also visible the smoke produced by the engine of the UAV, which causes several
partial occlusions; the system behaves well also in these cases, due to the high number
of features being tracked. In Fig. 19 an example to show the rotational invariance of
SIFT matching is presented.

The next test shows the feasibility of the feature tracking system to guide an
autonomous vision based landing. Data collected from this test are also used for
a simulation of the safety analysis of the landing area, at the end of this section.
The altitude feedback is given to the control system evaluating the centre of mass
of matched features with respect to the centre of the actual view. Figure 20 shows a
sequence of a landing using always the same feature-based approach and a natural
landmark.
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The final tests were performed to evaluate the optical flow approach for a safe
landing area classification system on the real UAV. Firstly, images taken during
linear flights at constant height over the ground (first case described in Section 3)

Fig. 17 Tracking of the landing area with respect to the given one, using a natural landmark and
dealing with smoke occlusions
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Fig. 18 Matching between two frames using a natural landmark for landmark localization and
tracking

have been analyzed. Here following two different cases of depth estimation and
surface classification are reported. In Fig. 21 two illustrative sequences of images
taken flying over an unsafe area (Fig. 21a) and a safe (Fig. 21b) area are shown.
Every pair of consequential images was analyzed. A variance analysis of geometrical
characteristics of the blue lines obtained from SIFT feature matching was performed
and a representative value computed. Figure 22 shows two different situations: the
first matching (unsafe area) presents a variance parameter almost hundred times
greater than second one (safe area). The variance parameters in Fig. 22a and b are
382.06 and 2.78 respectively, with an experimentally determined threshold of 50.

A second test (case of vertical landing described in Section 3) was also performed
in a real scenario. The radial movement of features, shown in Fig. 23, is the base of
the heuristic that evaluates the kind of surface and, according to an experimental

Fig. 19 An example to show the rotational invariant SIFT matching
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Fig. 20 A sequence of target identification and tracking used for autonomous navigation and landing

threshold, classifies the safe landing area. Figure 23 shows the case of the helicopter
approaching a safe (Fig. 23a) and an unsafe (Fig. 23b) landing area. In the first
case the control system allows the helicopter to land. In the second case the safe
landing area classification gives back to the supervisor the command to leave the
area because it is unsafe.

Figure 24 is the comparison between parameters of the safe and unsafe area. The
evaluation of the variance of the distances between features among all extracted fea-
tures and frame by frame during the vertical landing, is a good and fast methodology.
The heuristic does not add computational time to the process with respect to the
feature extraction process, which is much bigger than all the post processing here
proposed and presented. This enforces the general idea of re-using the same features
extracted for landing area detection and tracking for other purposes, such as the safe
landing area classification.

Other preliminary results were obtained using SURF and other variants of these
approaches, previously cited. All bring to very similar results and here only SIFT
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Fig. 21 Two illustrative sequences of images taken flying over an unsafe area (a) and a safe area (b),
respectively

ones are presented. The proposed approach is totally general and applicable to any
kind of local feature extractor.

The real scenario results obtained with the use of HELIBOT are encouraging and
current works are on the extension of this approach for motion analysis of the landing
area (e.g., avoiding streets or flat areas used by people).

6 Conclusions and Future Works

In this paper the design and implementation of a vision-based landing and navi-
gation algorithm for an autonomous helicopter has been presented. A hierarchical
behaviour-based controller exploits alternately GPS and vision input data, allowing
the helicopter to navigate from an initial position to a final position in a partially
known environment, to locate a landing target and to land on it. The vision system

Fig. 22 SIFT Features matching analysis. Variance parameters are 382.06 (a) and 2.78 (b)
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Fig. 23 Frame by frame matching of a safe (a) area and of an unsafe landing region (b). Evaluated
parameters are reported in next figure

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6 x 10−5

flat (blue)   : mean = 3.07e−006

variance = 2.82e−012

slope (red) : mean = 4.33e−006

variance = 7.89e−011

Fig. 24 Mean (dashed lines) and Variance (continuous lines) parameters used for the classification;
blue continuous line represents a flat area, while the red one is the variance of the slope, that is an
unsafe area for the landing
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allows to define a target area from a high resolution aerial or satellite image, hence to
define the waypoints of the navigation trajectory or the landing area. Two algorithms
for safe landing area detection are also proposed, based on the optical flow analysis.
Results show the appropriateness of the vision based approach that does not require
any artificial landmark and is robust to occlusions and light variations.

Future works are oriented to improve robustness of the whole system and
specifically some important aspects of the landing task concerning with safety. The
possibilities related to the optical flow techniques presented in the last part of the
paper will be explored to obtain not only the simple evaluation of the landing area
flatness, but even the capacity to actively search a safe zone. The first objective will
be the detection of safe and unsafe areas from the same image.

The applications of such a system are notable; from exploration and rescue to
target tracking and data acquisition.
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