
Path Planning 
with Multiple Objectives 
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Most path planners are designed to generate a single path that is optimal 

in terms of some criterion such as path length or travel time. Howev- 
er, for realistic terrain navigation we wish to find a path that is rea- 
sonable to execute in a given environment. Therefore we must 
consider several factors, such as safety, time, and energy consump- 
tion. In this article the authors investigate how to find a set of paths 
(as opposed to a single path) so as to permit various choices concem- 
ing multiple criteria. They present simulation results to demonstrate 
the feasibility of the approach and discuss an extension to navigation 
in time-varying scenes. 
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his paper addresses the problem of finding a navigation T path for a mobile robot that must consider multiple LUSL 
in navigation, such as the length of the path, traversability of 
the area, time to travel to the destination location, etc. In 
most path planning problems, we are interested in finding a 
path that is optimal in some single criterion such as path 
length. Practically, however, most navigation tasks must take 
into accounts other criteria at the same time. For example, we 
do not want a shortest path at the cost of safety along the 
path. This paper presents a method for generating a group of 
paths based on a given set of criteria so that the user can pick 
the one that best suits his objectives. 

To illustrate the motivation for our study for multiobjective 
search, let us give one example from path search in a time- 
varying domain. In a time-varying environment, the mini- 
mum-length path and 

the robot has actually moved along the path. See Fig. 1 for an 
example. The environment contains an obstacle moving from 
left to right (Fig. l(i)). Along the fastest path, robot motion 
would be via a corner of the moving obstacle (Fig. l(ii)), while 
along the shortest path, the robot would wait until the obsta- 
cle is gone and follow a straight-line path (Fig. l(iii)). Time- 
minimum paths are desirable for robots that need to arrive at 
the destination location as soon as possible, while robots may 
save energy along shortest distance paths. Between the two 
extremes, there are a variety of paths which are of practical 
value if they are sufficiently fast and short, although they may 
be neither of minimum-time nor minimum-length. 

Practically, these are usually the paths that are desirable. 
We don't want an optimal path in terms of some single crite- 
rion at the cost of other equally important criteria. This is 

exactly the type of problem - 
minimum-delay path are usu- 
ally not the same. Delay is the 
time required to travel from 
start to goal points, and length 
is measured by the distance 

that our multiobjective search 
is designed for. 

One may wonder why a 
conventional single objective 
path planner cannot be used 
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F’zgure 1. Fast path (ii) and short path (iii, 

e 

0 

e 

e 

Shorter Path Length Longer 

Figure 2. Nondenominated path 

with its objective set as a weighted sum of multiple objectives, 
that is, cost = o1 c1 + oz c2 + ..., where c, is the i-th cost and o 
is the weight for the i-th cost. By selecting appropriate 
weights, a path of desirable property may be obtained by a 
search with a single objective. For several reasons, multiple 
objective search may be better than a single objective search 
with weighted objectives. First, if the user wants to find the 
best paths in terms of a variety of objectives, search with a 
single objective may have to be run many times, whereas one 
execution of multiobjective search suffices to answer such 
queries. Secondly, a single search with weighted objectives 
cannot give a satisfactory answer to a query such as “Among 
the paths whose path-lengths are within c and safety factor is 
less than d, what is the path whose travel time is minimum?’ 
whereas multiobjective search can. Finally, when some objec- 
tives are dependent on others, multiple objective search must 
be used to generate paths to generate an optimal solution. 
This point will be explained in more detail later. 

We will first introduce search methods with multiple 
objectives and present our simulation results produced by our 
method. We will then compare our method with other 
approaches and discuss an extension to handle time-vauying 
environments. 

PATH SEARCH METHODS 
In this section we present our multiobjective search algo- 
rithm in the context of static environments. Throughout this 
section, we use two criteria for path evaluation, 
sumption and path length, to illustrate our searc 
the simulation described in the next section, we measure 
energy consumption as a function of slope of the path being 
traversed, while path length is measured by the Manhattan 
distance. For a nonflat terrain, a shortest path may not neces- 
sarily be the path with the lowest energy consumption due to 
the presence of steep hills, etc. Suppose we have a set of paths 
nl, 712, ..., from the start point to a certain location in the map. 
Then, the paths can be plotted on a 2-dimensional chart as in 
Fig 2, where the horizontal axis represents path length and 
the vertical axis represents energy consumed. Each black dot 
represents a path. For our purpose, it is not necessary to keep 
all the black dots in the chart since some paths may be domi- 
nated by others. A path nl is said to dominate another path na 
if path nl is better than nz in all the criteria considered. If this 
is the case, there is no point in keeping path n2 for further 
processing. If no path dominates path TI: then n i s  said to be 
nondominated. 

It is easy to confirm that a dot (representing a certain 
path) is nondominated when the lower-left quadrant centered 
at the dot does not contain any other dot. In Fig. 2, the points 
connected by the solid lines are nondominated. In the case of 
two objectives, the set of nondominated paths can be linearly 
ordered as nl, nz, ...,S. They satisfy the following nondomi- 
nated property (NDP). 

MDP 

lower) than T + ~ .  
1. Path nz is more economical (energy consumption is 

2. Path ni+l is shorter than E,. 
3. Path n, is the most economical among paths whose path 

4. Path ni is the shortest among paths whose energy con- 

5. The list is maximal to satisfy the above conditions. 

This idea plays an important role in multiobjective search 
[12]. It should be clear that with this ordering it is relatively 
simple to answer queries such as 

lengths are equal to or shorter than n,. 

sumption is equal to or earlier than that of nz. 

1. Find a path that is shorter than distance a and whose 

2. What is the shortest path among paths whose economy 
economy does not exceed b. 

is less than c? 

For n objectives, paths can be plotted in an n-dimensional 
space and nondominated paths are defined in a similar man- 
ner, although paths can no longer be ordered linearly. The 
goal is to find a set of nondominated paths at the destination 
point so that queries concerning multiple objectives can be 
answered. 

Search Algorithm 
Now we present our search algorithm for path planning with 
multiple objectives. For the sake of clarity, we present our 
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method using only two objectives. Generalization to multiple 
objectives should be straightforward. We assume that the ter- 
rain is represented by a grid (pixel array) as is usually done for 
terrain navigation. We associate PATH-LIST to each pixel Pi to 
retain a list of nondominated paths from S to Pi where S is the 
start point. For two objectives, energy consumption and path 
length, an element of Pi ’s PATH-LIST is a path of the form 
[en, len, predecessor], where en, len, and predecessor are the 
energy consumed so far to reach Pi, path length from S to PI,, 
and PI ‘s predecessor along the path. Initially, PATH-LIST of 
all nodes in the grid are empty. 

To calculate weights between pixel P and one of its neigh- 
boring pixels 4, we use procedure MOVE(P, Q), whose output 
is of the form [P, Q, len], where en and len respectively denote 
the accumulated energy consumption and path length from S 
to 4 via P. We use a queue to store paths whose en and len are 
tentatively assigned. An element of the queue is of the same 
form as outputs of MOVE. The following algorithm Find-Path 
will create a set of nondominated paths for all pixels starting 
from a start pixel S. 

Procedure Find-Path 
1. Insert the start tuple [nil, $0, 01 into the queue where t l  

is the start time. 
2. If the queue is empty, then exit the procedure. Other- 

wise, pop an element, say [& P,, e, I ] ,  from the queue whose 
associated energy e is the lowest. 

3. If I of the popped tuple in Step 2 is smaller than len of 
the last element of 4’s PATH-LIST, then enter [e,Z,K,] into q s  
PATH-LIST and enter output of MOVE(4,Q) into the queue 
for all Q adjacent to 4 in the grid. Repeat Steps 2 and 3. 

In Step 3, we check if the popped element in Step 2,  
[e,l,K,], may be added to PATH-LIST without violating the 
NDP. If it preserves the NDP, it is entered in PATH-LIST. At 
this point this element becomes a permanent element of 4’s 

For example, suppose that pixel P has paths x ~ , x Z ,  ...7~4 sat- 
isfying the NDP, where nl is the lowest in energy consump- 
tion as in Fig. 2. Since elements with lower energy are popped 
first from the queue, a new path to pixel N, say 7c5, cannot be 
lower in energy than n4 Thus, if a new path 7 ~ 5  is to be added 
in step 3, it must be in the upper-left quadrant centered at 7~4, 

namely, it must be shorter than n4, 
The key strategy of this algorithm is that we always retain 

for a pixel a list of paths with the NDP. A path to a certain 
pixel, N,  that is more costly and longer than existing paths 
stored in N ’s PATH-LIST need not be retained; extension of 
such a path can not produce a path of better quality than 
existing paths. 

We now show that procedure Find-Path correctly com- 
putes PATH-LISTS using induction on n, the number of ele- 
ments in all PATH-LISTS. We prove that for an element being 
added to a PATH-LIST, there exists no path that is strictly 
shorter and strictly economical than that element being 
added. Clearly, when n=l ,  the claim is true. 

Suppose an element [K,, P,, e, I] is being added to PJ’s 
PATH-LIST in Step 3. If this operation is not correct (i.e., it 
cannot be entered to 4’s PATH-LIST), then there must exist 

PATH-LIST. 

another element [MP, e: 11 such that e ’ s  e and 1‘s I. This 
element must be either currently in the queue or a descen- 
dant of an element currently in the queue. In either case, the 
value e cannot be the smallest element in the queue. Howev- 
er, it contradicts the choice made in step 2, that is, e is the 
smallest element in the queue. 

SIMULATION RESULTS 
In this section, we show some results of software simulation 
of the multiobjective search algorithm described in the previ- 
ous section. Figure 3a contains a synthetic example terrain in 
which the dark areas represent plateaus, the lines indicate val- 
leys, and the black dot is the lowest point which also serves as 
the destination point. The start point is selected about where 
the three valleys meet in the center of the map. Figure 3b 
contains the result of running the multiobjective search algo- 
rithm in which the dark lines indicate paths. In this run, we 
measure distance by the Manhattan distance, while the cost of 
moving from pixel P to pixel Q is assigned as 

a(height(P) - height(Q)) if height(P) < height(@ 
P(height(Q) - height(P)) otherwise cost(P, Q) = 

where a and p are coefficients. 
In this simulation, we set a = 3p, indicating that climbing 

up consumes three times more energy than descent. There is 
no pixel that is not traversable in the scene. The result shows 
that there are two classes of paths, one corresponding to 
shortest paths (moving straight from the start point to the 
destination, traversing the plateau) and the other correspond- 
ing to  paths with lowest economy (moving around the 
plateau). There is no third type of paths, meaning that there is 
no gain in traversing the plateau somewhere between the two 
path classes in this terrain. The results of the algorithm 
applied to scenes in Figs. 4a and 5a are shown in Figs. 4b and 
5b, respectively. In these cases, there are three classes of 
paths. 

The resolution of the pixel maps is 40 by 40 and planning 
the paths takes about 5 seconds on a Silicon Graphics Indigo. 
Most pixels have been explored by the search algorithm. Thus, 
running time of the algorithm is sensitive to the resolution of 
the map as well as to the number of objectives. For example, 
the algorithm takes on the order of several minutes to run for 
a map which is a couple of times longer than those illustrated. 

DISCUSSION 

Comparison 
We will now compare our approach with other approaches 
that are often used in navigation. A popular approach for navi- 
gation in an obstacle-cluttered environment is the potential 
field approach [ 7 , 8 ] .  In this approach, the path is determined 
by repulsive forces received from the obstacles and attractive 
force from the destination point. The path tends to pass 
through the valley of potential field, thus the path produced is 
in general considered as safe. However, the path may lead into 
a local minimum depending on the shapes of the obstacles, at 
which point the vehicle on the path does not make any 
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Figure 3. 

progress toward the goal point. Methods using the Voronoi 
diagram [le] and skeletons [l] also keep the vehicle away 
from the obstacles. 

On the other hand, a path generated by the visibility graph 
[9] is known to be shortest and consists of vertex-to-vertex 
motions. Most approaches in terrain navigation based on grid 
representations [ll, 21 use heuristic search methods such as 
A* to find a path. In this case, the path can be optimized in 
terms of some single criterion set by the user. Often, total 
path length is used to optimize the path. A method based on 
variational calculus [13] can take into account a blend of safe- 
ty and path length. 

The primary difference between our method and the 
approaches mentioned above is that our method generates a 
group of paths as opposed to a single path. This enables the 
user to select an appropriate path that suits his needs. On the 
other hand, it takes more time to execute the search proce- 
dure since we must keep track of all the nondominated paths 

Figwe 4. 

at all times during search. For a single objective search, only 
one path needs to be retained at any pixel during the search, 
while in multiobjective search multiple paths need to be 
retained and processed. 

Extensions 
So far we have assumed that the environment is static, that is, 
it does not change over time. In this section, we consider an 
extension of our approach to a time-varying environment. We 
consider the case in which the environment contains some 
obstacles whose locations change over time along known tra- 
jectories. The problem of path planning among moving obsta- 
cles has been approached by a variety of methods [3,4,6,10]. 

At the beginning of this article, we stated that shortest paths 
and fastest paths are usually different in a time-varying envi- 
ronment. We note that there is a dependency between fastest 
paths and other paths in a time-varying environment. To see 
this, consider the case in which a person inside a certain room 
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Figure 5. 

is to reach a point outside of the room through a door. 
Suppose that he can move out of the room only when he 

makes the fastest move to the door. In such a case, in order to 
plan any path to reach the goal point, he first needs to make a 
fastest move to the door. Thus, we see that planning a mini- 
mum-delay path is a prerequisite for the problem of finding 
any path (optimizing any criterion) at all. Multiobjective 
search can be effectively used for such a case. 

Now we extend our bitmap structure to handle moving 
objects. In a time-dependent environment, a pixel takes one of 
the two time-dependent states, “free” (not covered by any of 
the obstacles) or “occupied (covered by some obstacle, thus 
not traversable). A pixel in the environment alternates 
between “free” and “occupied’ states. Thus, we can keep a 
sequence of free time intervals for each pixel. The representa- 
tion scheme for time may be regarded as run-length coding. 
The formulation can be used to represent arbitray time-vay- 
ing objects within a given resolution, rather than being able 

to represent just moving obstacles. It can represent obstacles 
whose bounday shapes change over time, etc. 

Our path planning problem can be interpreted as finding a 
sequence of free intervals from a given start position to a 
given destination position under certain conditions concern- 
ing a speed constraint of the robot. The speed bound affects 
the travel time and choice of paths in the environment. 
Fastest paths and shortest paths can be computed by using a 
multiobjective search method analogous to the one described 
in the previous section. As noted above, in this case, we can- 
not use shortest path algorithms alone to find a path of mini- 
mum-length, as the  shortest path problem contains 
minimum-delay path problem as a part of it. See [4] for 
details. After finding a path, we can postprocess the path by 
using, say, the method of [3] to produce a path satisfying its 
physical constraints such as acceleration limits. 

CONCL USIONS 
We have considered a path planning approach that is suitable 
when the user has multiple criteria for path selection and 
wishes to choose an acceptable path from a set of candidate 
paths. We have used the concept of nondominant property in 
our path search and shown its feasibility in case of two objec- 
tives by computer simulation. A navigation path is typically 
acceptable when it satisfies multiple objectives. The presented 
search algorithm is capable of satisfying this requirement. As 
a natural consequence, its processing time is multiple times 
slower than search algorithms for a single objective. The 
queue size will limit the range of applications. A method 
using a hierarchical search [5] may have to be used to speed 
up the approach. 
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