
Path Planning
with Multiple Objectives

... t..............*..........rl........l~~'.**.~.**~.*~*~*,**~*~*~.**~~*~*.~.*.**.~..
Most path planners are designed to generate a single path that is optimal

in terms of some criterion such as path length or travel time. Howev-
er, for realistic terrain navigation we wish to find a path that is rea-
sonable to execute in a given environment. Therefore we must
consider several factors, such as safety, time, and energy consump-
tion. In this article the authors investigate how to find a set of paths
(as opposed to a single path) so as to permit various choices concem-
ing multiple criteria. They present simulation results to demonstrate
the feasibility of the approach and discuss an extension to navigation
in time-varying scenes.
. . . I ~...~.....~...1........11....1..~.~~~~*~.~*~~*.~..*~~~.~~~.*....~~~~~..~~...~

his paper addresses the problem of finding a navigation T path for a mobile robot that must consider multiple LUSL
in navigation, such as the length of the path, traversability of
the area, time to travel to the destination location, etc. In
most path planning problems, we are interested in finding a
path that is optimal in some single criterion such as path
length. Practically, however, most navigation tasks must take
into accounts other criteria at the same time. For example, we
do not want a shortest path at the cost of safety along the
path. This paper presents a method for generating a group of
paths based on a given set of criteria so that the user can pick
the one that best suits his objectives.

To illustrate the motivation for our study for multiobjective
search, let us give one example from path search in a time-
varying domain. In a time-varying environment, the mini-
mum-length path and

the robot has actually moved along the path. See Fig. 1 for an
example. The environment contains an obstacle moving from
left to right (Fig. l(i)). Along the fastest path, robot motion
would be via a corner of the moving obstacle (Fig. l(ii)), while
along the shortest path, the robot would wait until the obsta-
cle is gone and follow a straight-line path (Fig. l(iii)). Time-
minimum paths are desirable for robots that need to arrive at
the destination location as soon as possible, while robots may
save energy along shortest distance paths. Between the two
extremes, there are a variety of paths which are of practical
value if they are sufficiently fast and short, although they may
be neither of minimum-time nor minimum-length.

Practically, these are usually the paths that are desirable.
We don't want an optimal path in terms of some single crite-
rion at the cost of other equally important criteria. This is

exactly the type of problem -
minimum-delay path are usu-
ally not the same. Delay is the
time required to travel from
start to goal points, and length
is measured by the distance

that our multiobjective search
is designed for.

One may wonder why a
conventional single objective
path planner cannot be used

~ ~ t o f c a n ~ u ~ f ? r I g ~ i ~ ~ n n ~ ~ n ~ ~ i m ~ c r , ~yul Ohio State (~nliutsi-

tu, 2015 Nei[Avauc: CvhtmblLr, OH 43210. E-muii: fujimuru@&.ohiu
sfUte.& /'hone: B'14-29&6ii"JO Fax: 624-292-2911

March 1996 1070-9932/96/$5.0001996 IEEE IEEE Robotics &Automation Magazine 33

. e . e

G G G
4 A

F’zgure 1. Fast path (ii) and short path (iii,

e

0

e

e

Shorter Path Length Longer

Figure 2. Nondenominated path

with its objective set as a weighted sum of multiple objectives,
that is, cost = o1 c1 + oz c2 + ..., where c, is the i-th cost and o
is the weight for the i-th cost. By selecting appropriate
weights, a path of desirable property may be obtained by a
search with a single objective. For several reasons, multiple
objective search may be better than a single objective search
with weighted objectives. First, if the user wants to find the
best paths in terms of a variety of objectives, search with a
single objective may have to be run many times, whereas one
execution of multiobjective search suffices to answer such
queries. Secondly, a single search with weighted objectives
cannot give a satisfactory answer to a query such as “Among
the paths whose path-lengths are within c and safety factor is
less than d, what is the path whose travel time is minimum?’
whereas multiobjective search can. Finally, when some objec-
tives are dependent on others, multiple objective search must
be used to generate paths to generate an optimal solution.
This point will be explained in more detail later.

We will first introduce search methods with multiple
objectives and present our simulation results produced by our
method. We will then compare our method with other
approaches and discuss an extension to handle time-vauying
environments.

PATH SEARCH METHODS
In this section we present our multiobjective search algo-
rithm in the context of static environments. Throughout this
section, we use two criteria for path evaluation,
sumption and path length, to illustrate our searc
the simulation described in the next section, we measure
energy consumption as a function of slope of the path being
traversed, while path length is measured by the Manhattan
distance. For a nonflat terrain, a shortest path may not neces-
sarily be the path with the lowest energy consumption due to
the presence of steep hills, etc. Suppose we have a set of paths
nl, 712, ..., from the start point to a certain location in the map.
Then, the paths can be plotted on a 2-dimensional chart as in
Fig 2, where the horizontal axis represents path length and
the vertical axis represents energy consumed. Each black dot
represents a path. For our purpose, it is not necessary to keep
all the black dots in the chart since some paths may be domi-
nated by others. A path nl is said to dominate another path na
if path nl is better than nz in all the criteria considered. If this
is the case, there is no point in keeping path n2 for further
processing. If no path dominates path TI: then n i s said to be
nondominated.

It is easy to confirm that a dot (representing a certain
path) is nondominated when the lower-left quadrant centered
at the dot does not contain any other dot. In Fig. 2, the points
connected by the solid lines are nondominated. In the case of
two objectives, the set of nondominated paths can be linearly
ordered as nl, nz, ...,S. They satisfy the following nondomi-
nated property (NDP).

MDP

lower) than T + ~ .
1. Path nz is more economical (energy consumption is

2. Path ni+l is shorter than E,.
3. Path n, is the most economical among paths whose path

4. Path ni is the shortest among paths whose energy con-

5. The list is maximal to satisfy the above conditions.

This idea plays an important role in multiobjective search
[12]. It should be clear that with this ordering it is relatively
simple to answer queries such as

lengths are equal to or shorter than n,.

sumption is equal to or earlier than that of nz.

1. Find a path that is shorter than distance a and whose

2. What is the shortest path among paths whose economy
economy does not exceed b.

is less than c?

For n objectives, paths can be plotted in an n-dimensional
space and nondominated paths are defined in a similar man-
ner, although paths can no longer be ordered linearly. The
goal is to find a set of nondominated paths at the destination
point so that queries concerning multiple objectives can be
answered.

Search Algorithm
Now we present our search algorithm for path planning with
multiple objectives. For the sake of clarity, we present our

34 0 IEEE Robotics &Automation Magazine March 1996

method using only two objectives. Generalization to multiple
objectives should be straightforward. We assume that the ter-
rain is represented by a grid (pixel array) as is usually done for
terrain navigation. We associate PATH-LIST to each pixel Pi to
retain a list of nondominated paths from S to Pi where S is the
start point. For two objectives, energy consumption and path
length, an element of Pi ’s PATH-LIST is a path of the form
[en, len, predecessor], where en, len, and predecessor are the
energy consumed so far to reach Pi, path length from S to PI,,
and PI ‘s predecessor along the path. Initially, PATH-LIST of
all nodes in the grid are empty.

To calculate weights between pixel P and one of its neigh-
boring pixels 4, we use procedure MOVE(P, Q), whose output
is of the form [P, Q, len], where en and len respectively denote
the accumulated energy consumption and path length from S
to 4 via P. We use a queue to store paths whose en and len are
tentatively assigned. An element of the queue is of the same
form as outputs of MOVE. The following algorithm Find-Path
will create a set of nondominated paths for all pixels starting
from a start pixel S.

Procedure Find-Path
1. Insert the start tuple [nil, $0, 01 into the queue where t l

is the start time.
2. If the queue is empty, then exit the procedure. Other-

wise, pop an element, say [& P,, e, I] , from the queue whose
associated energy e is the lowest.

3. If I of the popped tuple in Step 2 is smaller than len of
the last element of 4’s PATH-LIST, then enter [e,Z,K,] into q s
PATH-LIST and enter output of MOVE(4,Q) into the queue
for all Q adjacent to 4 in the grid. Repeat Steps 2 and 3.

In Step 3, we check if the popped element in Step 2,
[e,l,K,], may be added to PATH-LIST without violating the
NDP. If it preserves the NDP, it is entered in PATH-LIST. At
this point this element becomes a permanent element of 4’s

For example, suppose that pixel P has paths x ~ , x Z , ...7~4 sat-
isfying the NDP, where nl is the lowest in energy consump-
tion as in Fig. 2. Since elements with lower energy are popped
first from the queue, a new path to pixel N, say 7c5, cannot be
lower in energy than n4 Thus, if a new path 7 ~ 5 is to be added
in step 3, it must be in the upper-left quadrant centered at 7~4,

namely, it must be shorter than n4,
The key strategy of this algorithm is that we always retain

for a pixel a list of paths with the NDP. A path to a certain
pixel, N, that is more costly and longer than existing paths
stored in N ’s PATH-LIST need not be retained; extension of
such a path can not produce a path of better quality than
existing paths.

We now show that procedure Find-Path correctly com-
putes PATH-LISTS using induction on n, the number of ele-
ments in all PATH-LISTS. We prove that for an element being
added to a PATH-LIST, there exists no path that is strictly
shorter and strictly economical than that element being
added. Clearly, when n=l , the claim is true.

Suppose an element [K,, P,, e, I] is being added to PJ’s
PATH-LIST in Step 3. If this operation is not correct (i.e., it
cannot be entered to 4’s PATH-LIST), then there must exist

PATH-LIST.

another element [MP, e: 11 such that e ’ s e and 1‘s I. This
element must be either currently in the queue or a descen-
dant of an element currently in the queue. In either case, the
value e cannot be the smallest element in the queue. Howev-
er, it contradicts the choice made in step 2, that is, e is the
smallest element in the queue.

SIMULATION RESULTS
In this section, we show some results of software simulation
of the multiobjective search algorithm described in the previ-
ous section. Figure 3a contains a synthetic example terrain in
which the dark areas represent plateaus, the lines indicate val-
leys, and the black dot is the lowest point which also serves as
the destination point. The start point is selected about where
the three valleys meet in the center of the map. Figure 3b
contains the result of running the multiobjective search algo-
rithm in which the dark lines indicate paths. In this run, we
measure distance by the Manhattan distance, while the cost of
moving from pixel P to pixel Q is assigned as

a(height(P) - height(Q)) if height(P) < height(@
P(height(Q) - height(P)) otherwise cost(P, Q) =

where a and p are coefficients.
In this simulation, we set a = 3p, indicating that climbing

up consumes three times more energy than descent. There is
no pixel that is not traversable in the scene. The result shows
that there are two classes of paths, one corresponding to
shortest paths (moving straight from the start point to the
destination, traversing the plateau) and the other correspond-
ing to paths with lowest economy (moving around the
plateau). There is no third type of paths, meaning that there is
no gain in traversing the plateau somewhere between the two
path classes in this terrain. The results of the algorithm
applied to scenes in Figs. 4a and 5a are shown in Figs. 4b and
5b, respectively. In these cases, there are three classes of
paths.

The resolution of the pixel maps is 40 by 40 and planning
the paths takes about 5 seconds on a Silicon Graphics Indigo.
Most pixels have been explored by the search algorithm. Thus,
running time of the algorithm is sensitive to the resolution of
the map as well as to the number of objectives. For example,
the algorithm takes on the order of several minutes to run for
a map which is a couple of times longer than those illustrated.

DISCUSSION

Comparison
We will now compare our approach with other approaches
that are often used in navigation. A popular approach for navi-
gation in an obstacle-cluttered environment is the potential
field approach [7 , 8] . In this approach, the path is determined
by repulsive forces received from the obstacles and attractive
force from the destination point. The path tends to pass
through the valley of potential field, thus the path produced is
in general considered as safe. However, the path may lead into
a local minimum depending on the shapes of the obstacles, at
which point the vehicle on the path does not make any

March 1996 IEEE Robotics &Automation Magazine 35

Figure 3.

progress toward the goal point. Methods using the Voronoi
diagram [le] and skeletons [l] also keep the vehicle away
from the obstacles.

On the other hand, a path generated by the visibility graph
[9] is known to be shortest and consists of vertex-to-vertex
motions. Most approaches in terrain navigation based on grid
representations [ll, 21 use heuristic search methods such as
A* to find a path. In this case, the path can be optimized in
terms of some single criterion set by the user. Often, total
path length is used to optimize the path. A method based on
variational calculus [13] can take into account a blend of safe-
ty and path length.

The primary difference between our method and the
approaches mentioned above is that our method generates a
group of paths as opposed to a single path. This enables the
user to select an appropriate path that suits his needs. On the
other hand, it takes more time to execute the search proce-
dure since we must keep track of all the nondominated paths

Figwe 4.

at all times during search. For a single objective search, only
one path needs to be retained at any pixel during the search,
while in multiobjective search multiple paths need to be
retained and processed.

Extensions
So far we have assumed that the environment is static, that is,
it does not change over time. In this section, we consider an
extension of our approach to a time-varying environment. We
consider the case in which the environment contains some
obstacles whose locations change over time along known tra-
jectories. The problem of path planning among moving obsta-
cles has been approached by a variety of methods [3,4,6,10].

At the beginning of this article, we stated that shortest paths
and fastest paths are usually different in a time-varying envi-
ronment. We note that there is a dependency between fastest
paths and other paths in a time-varying environment. To see
this, consider the case in which a person inside a certain room

36 * IEEE Robotics &Automation Magazine March 1996

Figure 5.

is to reach a point outside of the room through a door.
Suppose that he can move out of the room only when he

makes the fastest move to the door. In such a case, in order to
plan any path to reach the goal point, he first needs to make a
fastest move to the door. Thus, we see that planning a mini-
mum-delay path is a prerequisite for the problem of finding
any path (optimizing any criterion) at all. Multiobjective
search can be effectively used for such a case.

Now we extend our bitmap structure to handle moving
objects. In a time-dependent environment, a pixel takes one of
the two time-dependent states, “free” (not covered by any of
the obstacles) or “occupied (covered by some obstacle, thus
not traversable). A pixel in the environment alternates
between “free” and “occupied’ states. Thus, we can keep a
sequence of free time intervals for each pixel. The representa-
tion scheme for time may be regarded as run-length coding.
The formulation can be used to represent arbitray time-vay-
ing objects within a given resolution, rather than being able

to represent just moving obstacles. It can represent obstacles
whose bounday shapes change over time, etc.

Our path planning problem can be interpreted as finding a
sequence of free intervals from a given start position to a
given destination position under certain conditions concern-
ing a speed constraint of the robot. The speed bound affects
the travel time and choice of paths in the environment.
Fastest paths and shortest paths can be computed by using a
multiobjective search method analogous to the one described
in the previous section. As noted above, in this case, we can-
not use shortest path algorithms alone to find a path of mini-
mum-length, as the shortest path problem contains
minimum-delay path problem as a part of it. See [4] for
details. After finding a path, we can postprocess the path by
using, say, the method of [3] to produce a path satisfying its
physical constraints such as acceleration limits.

CONCL USIONS
We have considered a path planning approach that is suitable
when the user has multiple criteria for path selection and
wishes to choose an acceptable path from a set of candidate
paths. We have used the concept of nondominant property in
our path search and shown its feasibility in case of two objec-
tives by computer simulation. A navigation path is typically
acceptable when it satisfies multiple objectives. The presented
search algorithm is capable of satisfying this requirement. As
a natural consequence, its processing time is multiple times
slower than search algorithms for a single objective. The
queue size will limit the range of applications. A method
using a hierarchical search [5] may have to be used to speed
up the approach.

ACKNOWLEDGMENTS
The author would like to thank the participants of seminar
cis788.011 at Ohio State University for their helpful discus-
sions.

REFERENCES
[I] J. Barraquand and J. Latombe. Robot motion planning: A distributed

representation approach. International Journal of Robotics
Research, 10:72 89,1990.

[2] A. Elfes. Using occupancy grids for mobile robot perception and nav-
igation. IEEE Computers, 22:46 57,1989.

[3] T. Fraichard and C. Laugier. Path-velocity decomposition revisited
and applied to dynamic trajectory planning. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages
40-45, 1993.

[4] K. Fujimura. Motion planning using transient pixel representations.
In IEEE International Conference on Robotics and Automation,
pages 34-39,1993.

[5] K. Fujimura and H. Samet. A hierarchical strategy for path planning
among moving obstacles. Proceedings of the IEEE Transactions on
Robotics and Automation, 561-69, 1989.

[6] N.C. Griswold and J. Eem. Control for mobile robots in the presence
of moving objects. Proceedings of the IEEE Transactions on Robot-
ics andilutornation, 6263-268, 1990.

[7] Y.K. Hwang and N. Ahuja. Potential field approach to obstacle avoid-
ance. Proceedings of the IEEE Transactions on Robotics and
Automution, 8:23-32, February 1992.

[8] J. Kim and P.K. Khosla. Real-time obstacle avoidance using harmon-

March 1996 IEEE Robotics &Automation Magazine 37

ic potential functions. IEEE Transactions on Robotics and Automa-
tion, 8(3), June 1992.

[9] T. Lozano-Perez and M.A. Wesley. An algorithm for planning colli-

eralized Voronoi diagrams. IEEE Transactions on Robotics and
Aufomafion, 5: 143-150,1989.

sion-free paths among polyhedral obstacles. Communications ofthe
ACM, 22:560 570,1979.
C. Shih, T. Lee, and W.A. Gruver. A unified approach for robot
motion planning with moving polygonal obstacles. ZEEE Transac-
tions on Systems, Man, and Cybernetics, 20:903 915,1990.
A. Stenz. Optimal and efficient path planning for partially-known
environments. In Proceedings of the IEEE International Codmmce
on Robotics andAutomation.pp. 3310-3317,1993.
B.S. Stewart and C.C. White 111. Multiobjective A*. Journal of the

S. Suh and K. Shin. A variational dynamic programming approach
to robot path planning. IEEE Transactions on Robotics and
Automation, 26:334-349, 1988.
0 Takahashi and R.J Shilling. Motion planning in a plane using gen-

ACM, 38(4):775-814, 1991.

I I

edited by Dr. John Yen, Dr. Reza Langari, Texas A&M University,
and Dr. lotfi A. Zadeh, University o f California at Berkeley

This timely and extensive text focuses on industrial applications of
fuzzy logic with particular emphasis on real functioning systems.
A comprehensive volume of particular interest to industrial
practitioners who want to explore real world fuzzy and intelligent
systems applications.

(toll-free, USA and Canada)
or 1-908-981-0060 or Fax 1-908-981-9667 or mail to:

lEEE The Institute of Electrical and Electronics Engineers, Inc
445 Hoes lane, PO Box 1331, Piscataway, NJ 08855 1331 USA

Kikuo Fujimura received the
degrees in information scie
University of Tokyo, Japan, in 1983 and
1985, respectively, and the Ph.D. degree in
computer science from the University of
Maryland, College Park in 1990. He was
with the Autonomous Robotics group of the
Oak Ridge National Laboratory from 1990

to 1991, where he worked on mobile robot navigation. In
1991, he joined the Department of Computer and Informa-
tion Science of the Ohio State University, where he is current-
ly an Assistant Professor. His research interests include
computer graphics, vision, and machine intelligence.

King Fahd Universdy of Petrore,m and Minera/J S ~ a i Arob o

cop~bli~tied VI r ' l ,McGraw H 11 Curope

Newly recognized as an inzrea,~ gly mp2itont ore0 of electr ca ono
computer engineering VlSl nos Jntil ?3\v bccr .na a aole n SL h an
crcessible texitxmk form The authurs approxn eucn lopi. vy4tn a sol i,ow
ariven format ideal for sen or ~ n c e r j r c i d ~ a r e ~ groa-are- ana a y o n e
starhng work in ihc field of CAE for \ .SI Ccver I g 311 c l ~ p ~ c t ~ of physical
design, this book IS comp ete w tn i1Lsiroteu s o u ons and cnmples fof
matted by problew de' n I or cos' f-nLt 011s ana redra,nts pas‘ d e
approazhrs urid Infest arw 0pn-C ri,

A rrl l P C j ~ ' ~ a r j , ~ v e r / ~ ~ d p p
Prze &2 Y5 Member Price: $44.00

E orrfes No PC3609 06.7 * ISBN 0 ,'8G 1141 8

Cali 1-800-678-IEEE (toll-free, USAond Conadoj
or 1-908-981-0060 or Fax 1-908-981-9667 or mail to:

IEEE The l i s t iJre of Electricill ana Electron c s Engineers, Inc
4 4 5 hoe, Lone PO 6on ?31 P s . ~ i m a y '- 03&,;1 3.1 "9

38 - IEEE Robotics &Automation Magazine March 1996

