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Abstract 

In this paper, a two step path-planning algorithm for 
UAVs is proposed. The algorithm generates a stealthy 
path through a set of enemy radar sites of known loca- 
tion, and provides an intuitive way to trade-off stealth 
versus path length. In the first step, a suboptimal 
rough-cut path is generated through the radar sites by 
constructing and searching a graph based on Voronoi 
polygons. In the second step, a set of nonlinear or- 
dinary differential equations are simulated, using the 
graph solution as an initial condition. The ODEs de- 
scribe the dynamics of a set of virtual masses located 
in a virtual force field. The virtual forces push the 
masses away from the radars and toward one another. 
The’ ODEs are simulated to find a locally exponentially 
stable equilibrium solution, which is interpreted as the 
optimal path. A simulation is provided to illustrate the 
idea. 

1 Introduction 

Among the many open issues to be addressed in the 
development of UAVs is that of p a t h  p l a n n i n g .  A 
path planning algorithm computes a trajectory from 
the UAV’s present location to a desired future location, 
e.g. a target. 

A good path planning algorithm for UAVs must pos- 
sess several important attributes, making its design a 
multiple-objective optimization problem. First it must 
compute a s tea l thy  path, steering the aircraft and its 
radar signature around known enemy radar locations. 
This is difficult because no aircraft scatters or reflects 
radar radiation uniformly in all directions. Rather, ra- 
diation is radiated more strongly in some directions, 
and less strongly in others. The path planning algo- 
rithm should take advantage of any “spikes” in the sig- 
nature and point them away from known enemy radar 
locations. Second, generated trajectories should be of 
minimal length, subject to the stealthy constraint, and 
also satisfy the aircraft’s dynamic constraints. Third, 
the path-planning algorithm must be compatible with 
the cooperative nature envisioned for the UAV. A typi- 
cal mission might involve multiple UAVs attacking sin- 
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gle, well-defended target. The path-planner would be 
a component - a subroutine - of the hybrid control 
system that ensures all UAVs arrive simultaneously. 
And finally, path-plann.ing algorithms are expected to 
be coded in software that runs on an airborne proces- 
sor. Thus, they must be computationally efficient and 
“real time,’’ enabling the UAV to re-plan its trajectory 
should an unforeseen threat arise. This last charac- 
teristic should not be dismissed as an implementation 
issue to be addressed solely with increased computer 
power. 

In this paper, we propose a two-step method to gen- 
erate paths through the hostile territory illustrated in 
Figure 1. In the first step, a simple graph is constructed 
and searched, generating a rough-cut suboptimal path. 
This solution is used to initialize the second step, which 
uses virtual force fields to improve upon the graph so- 
lution. The approach produces a stealthy path with 
minimal path length, and does not suffer from the curse 
of dimensionality, making it suitable for real-time im- 
plementation. 

2 Step 1: Voronoi Graph Search 

A graph is a set that contains vertices and edges. 
Graphs can be used to solve the UAV path planning 
problem, just as they do for many similar robotic path- 
planning problems, by assigning vertices to discrete 
points of state space, connecting them appropriately 
with edges, assigning weights (costs) to each edge, and 
then searching the graph for an optimal trajectory us- 
ing one of several well-known algorithms. The dynamic 
constraints of the aircraft are roughly discretized in this 
approach by the edge assignment. For example, each 
vertex might represents ia discrete position (2, y, z )  and 
orientation (4, 8, $J) in space. The vertices are con- 
nected by an edge only if the aircraft can actually fly 
between those points. 

Unfortunately, this approach is suffers from the curse 
of dimensionality, making real-time implementation a 
challenge. One way address this computational com- 
plexity is to use a sequence of graphs. We start with 
a relatively course graph, one with a small number of 



Figure 1: The path planning problem: Find the path 
from the UAVs present position (triangle), to 
the target (concentric circles) that minimizes a 
weighted cost that penalizes total path length 
and also distance from the radar sites (small 
circles). 

vertices, and search it for an optimal solution. We then 
build a new graph in a neighborhood of this optimal so- 
lution, and search it for a new optimal solution. The 
second graph would have a higher density of vertices 
and edges. This procedure can be repeated. In this 
way, a detailed level of quantization is achieved around 
the final trajectory 

Taking this approach to  its extreme, we might begin by 
constructing the simplest possible graph that captures 
the very essence of the problem. Such a graph can be 
constructed using a Delaunay triangulation and its ge- 
ometric dual, Voronoi polygons. This procedure, which 
is begins with complete knowledge of the number and 
location of each radar site, as illustrated in Figure 1. 
For every triplet of radar sites, there exists a unique cir- 
cle that passes through all three. Consider only those 
triplets whose circle does not enclose any other radar 
sites, as shown in Figure 1 (bottom). The set of all 
such triplets is called the Delaunay triangulation, and 
the centers of the circles are called Voronoi points. We 
may now construct a graph by defining the vertices as 
the Voronoi points. Edges are drawn to connect two 
Voronoi points if and only if their associated Delaunay 
triangles share an edge. By drawing all such edges, we 
construct the Voronoi diagram or graph. The edges of 
the Voronoi diagram have the property that they are 
equidistant from pairs of radar sites. 

If we consider the Voronoi diagram to be a graph, with 
vertices being the Voronoi points and edges being the 
connecting segments, then we can assign weights to  

Figure 2: Constructing the Voronoi graph begins with 
knowledge of the radar sites (small circles), the 
UAV (triangle) and target (concentric circles). 
Triplets of radar sites are selected such that the 
unique circle that passes through them contains 
no other radar sites. These triplets form the 
Delaunay triangulation, and the center of each 
circle is a Voronoi point. Two Voronoi points 
are then connected to form an edge if their as- 
sociated Delaunay triangles share an edge. The 
Voronoi graph is completed by extending rays 
from the edge Voronoi points midway through 
the appropriate Delaunay triangle edge. The 
target and UAV are then attached to the graph. 

each edge just as we would for any graph. Weights 
are defined as a function of edge length and probability 
of detection by neighboring radars. Once the weights 
are assigned, the complete graph can be searched for 
the optimal path by dynamic programming. This pro- 
duces an optimal path from the set of Voronoi segments 
which is the simplest path through the radar sites, in 
the sense that it LLtells’l the UAV which pairs of radar 
sites to fly between. While this approach might pro- 
vide an overly simplified, coarse flight path, it is useful 
as an initial condition for other methods that can cap- 
ture more of the detail inherent in the path planning 
problem, such as a more refined graph or the optimal 
control approach outlined in the next section. 

3 Step 2: Virtual Forces 

For the second step of the overall approach, a repre- 
sentation of the path is generated via the steady-state 
equilibrium solution to  a Lagrangian mechanical sys- 
tem driven by virtual forces. In this method, a UAV 
path is represented by a “chain of point masses.” The 
masses are connected to  one another by springs and 
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Figure 3: The chain-of-masses being acted on by both the 
spring restoring forces and the virtual forces 
pushing from each radar site. 

dampers, as shown in Figure 3. The springs exert a 
contractive force, and act to reduce the length of the 
chain. One end of the chain is attached to the UAV 
location, while the other is attached to the target loca- 
tion. 

Ignoring the radar sites for now, if this system of 
springs, dampers and masses is initialized at uny ini- 
tial configuration, it will evolve in time according to 
the governing physics, and eventually converge to its 
potential energy minimum. Of course, because the 
only forces between the masses are due to the springs 
and dampers, this minimum energy configuration is a 
straight line of masses: The dampers remove all of 
the kinetic energy. If there were no enemy radar sites 
nearby, then this would be an optimal flight path be- 
tween the UAV location and its target. 

Now suppose there are enemy radar sites nearby the 
UAV. The key idea here is to force the chain of masses 
away from radar sites by using a virtual force field. 
We first consider the case of a uniform radar signa- 
ture. In this case, the signal strength of the return 
echo is inversely proportional to distance between the 
UAV and the radar site to the fourth power. So to 
force the path away from the radar site, assume that 
each radar site establishes a repulsive force field which 
acts to push away each mass according to an inverse- 
to-the-fourth law (l/distance4). The force acts along 
the straight line containing the mass and radar site. 
Thus, the total force acting on each mass is the vector 
sum of all the forces acting from the radar sites, plus 
the two spring forces acting from neighboring masses. 
When the dynamics of this system is initialized in any 
configuration, it will eventually converge to a potential 
energy minimum, because the dampers will remove all 
of the kinetic energy. 

This minimum energy configuration is a weighted sum 
of path length and the average distance from the radar 
sites. This is because the spring forces acting on each 
mass tend to minimize length, while the radar forces 
tend to maximize distance from the radars. By weight- 

Figure 4: The chain-of-masses idea, showing the two 
spring forces (F1 and -Fz and one virtual 
“radar” force (Fzl) acting on mass j = 2. 

ing these forces appropriately, an optimal (in the sense 
of minimizing potential energy) path can be generated. 
Once the system has converged, the path is defined as 
the sequence of way points defined by the steady-state 
mass locations, connected by straight line segments. 
The idea is illustrated in Figures 3 and 4. 

3.1 Uniform Radar Signatures 
Referring to Figure 4, the equations of motion for the 
uniform-radar signature case are derived as follows. 
Assume that we have M + 2 masses, indexed by j 
(0 5 j 5 M+1), where the first mass ( j  = 0) is located 
at the UAV location and the last mass ( j  = N + 1) is 
located at the target location. Let mj denote the mass 
of mass j. Let ( z j ,  yj) denote the (x, y)-coordinate of 
mass j ,  so (20,  yo) is the UAV Cartesian coordinate at 
time t o ,  and ( Z M , Y M )  is the target Cartesian coordi- 
nate, i.e., the desired UAV location at time t j .  Assume 
the springs between the masses are linear with a spring 
constant of IC, and let the dampers between each of the 
masses have a damping constant of b. 

With this notation, the distance between each of the 
M -t 2 masses is 

dj = d ( x j  - ~ j - 1 ) ~  + (yj  - ~ ~ - 1 ) ~  (1) 

for (1 5 j 5 M+l) .  Denote the normal vector pointing 
frorn mass j to mass j -- 1 as nj, so that 

Then the two spring restoring forces that act on mass 
j (1 5 j 5 M )  are given by Hooke’s law: 

Fj = K d j n j  

Fj+l = -Kd .  I f1  n .  J t l .  

The two linear viscous damping forces that act on mass 
j ,  which we denote with a -, are similarly expressed as 
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where the . denotes the dot product. 

Finally, the “virtual force” acting on mass j (1 5 j 5 
M )  from radar site k (1 5 k 5 N )  is defined to obey 
an “inverse-squared-squared law .” If each of the N 
radar sites are located at ( T k , j j k ) ,  then the distance 
from mass j to radar site k is 

d j k  = d ( ~ j  - j i k ) 2  + (yj - fjk)2 + h2 

where h is the height of the UAV, assumed to be con- 
stant. If we denote the normal vector pointing from 
radar site k to mass j as 

then we define the virtual force acting on mass j from 
radar k as 

F j k  = $hjk 
d, k 

where Q is a constant design parameter that represents 
the trade-off between stealth and path length. With 
this, the equations of motion for each mass expressed 
in Cartesian coordinates is just given by Newton’s law: 

which, expressed in Cartesian coordinates is 

m . x .  = 
3 3 4 Z j - l  - Zj) - “(Sj+l - Zj) - ~~ 

spring forces 
+ b(+l - Z3) - b(i,+l - Z3) 

damping forces 

(2) 
+ 5  Q 

k=l ((zj - 2 k ) 2  + (yj - f jk)2 + h2)5’2 . / w 

virtual forces 

for 1 5 j 5 M .  (A similar equation holds for the 
y-direction.) Note that the equations of motion for 
masses j = 0 and j = M + 1 are not expressed here 
because they are assumed to be fixed in space. 

Now, to find a path, we first triangulate the region us- 
ing the graph theory approaches outlined in Section 2. 
This produces a sequence of straight-line paths, which 
we use to initialize the virtual force approach. This is 
clone by placing the M masses uniformly along these 
straight-lines, and then simulating the equations of mo- 
tion (2) until the solution reaches equilibrium. The pa- 
rameter Q is set to trade-off stealth versus path-length. 
If Q = 0, then no penalty is placed on stealth, the non- 
linear terms in (2) vanish, and the masses will converge 
to the global straight-line equilibrium that minimizes 
the potential energy in the springs. For large Q, how- 
ever, the masses will be pushed away from the radar 

Figure 5:  At top, the 10 masses ( M  = 11) are initialized 
along a straight line, which would be a seg- 
ment from the Voronoi graph. The system of 
equations (2) is simulated and allowed to reach 
equilibrium, shown at bottom. For this simu- 
lation, b = 1, K. = 1, Q = 50, mj = 1, and the 
simulation time is 20s. 

sites, bending around them, reaching a local equilib- 
rium that represents a trade-off between minimal path 
length and average distance from the radars. The result 
of a typical Matlab simulation is illustrated in Figure 
5. 

Several remarks are in order. First, note that the right- 
hand sides of (2), although nonlinear, are globally Lip- 
schitz. This means that the solution to the differen- 
tial equations will exist for all time. Moreover, note 
that the virtual force never larger than l / h 4 ,  i.e., it  
“saturates” for large distances r&k. This means that 
the linear spring terms will dominate at large distances 
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Figure 6: Assigning an orientation I)~ to inass rnJ using 
the approximate derivative, to incorporate the 
effects of a non-uniform radar signature. 

from the radars, as intuition would suggest: The path 
should not be affected if a radar site is very far away. 
From a numerical simulation point-of-view, the non- 
linearity is “soft” (not severe), which makes for easy 
simulation of (2). This is important from the real-time 
implementation point-of-view. 

3.2 Non-Uniform Radar Signatures 
Equations (2) must be modified to incorporate the ef- 
fect of a non-uniform radar signature. For this, each 
mass mj must be assigned an orientation in space, be- 
cause the radar signature is a function of at  least yaw $ 
(and possibly roll 4) of the aircraft, measured relative 
to an inertial frame. The yaw (azimuth) orientation 
a.ngle $ j  can be defined in a discrete way for mass j by 
computing the angle between the-x-axis of an inertial 
frame and the straight line that passes through mass 
j - 1 and j + 1: 

$ j  = arctan(yj+l - yj-1, xj+l - xj-l) ,  

This is essentially the discrete approximation of the 
derivative of a curve, as shown in Figure 6. Then 
the aircraft’s signature function s(xjl  yj, $j, Zk, Gk), 
which depends on the relative orientation of the air- 
craft relative to each radar location can be evalu- 
ated, and the forces in (2) can be replaced by Q . 
S(xj1Yj,$j,uj,~k,21k). 

This modification makes the virtual force stronger 
when a radar lobe is pointing toward a radar station. 
But, the virtual force is still bounded by Q max s/h2 
because s is a globally bounded function of its argu- 
ments. Thus, solutions to (2) still exist for all time, and 
the modified mechanical system will again converge to 
a potential energy minimum. Since the virtual force 
is large when a lobe is pointed to a radar station, the 
system should converge such that the lobes point away 
from the stations, because the potential energy is less 
here. However, because the system is nonlinear, con- 
vergence will be to a local potential energy minimum; 
a unique global solution can not be expected to exist. 

Several simulations of the non-uniform case have been 
conducted, and the results can be obtained from the 
author [l]. The final “picture” for the non-convex case 
is :similar to Figure 5. 

Note that the Lagrangian mechanical system produces 
a path that is the opt,imal solution in a calculus-of- 
variations sense. The potential energy stored in the 
springs, r;di is just r; times the path length. 
When Q = 0, the radar weight is zero, the method 
produces a straight line, just as a calculus of variations 
approach would. When Q 2 0, some potential energy 
is “stored” in the potential field generated by the radar 
stations. Thus, what is minimized is a weighted sum of 
path length (energy stored in the springs) and distance 
from the radars. This is a discrete-space (lumped) ver- 
sion of what is being solved by the optimal control 
problem. 

Of course, the path planning problem could be posed as 
an optimal control problem from the start [l]. However, 
computing a solution to the optimal control problem in- 
volves the numerical solution to a two-point boundary 
value problem, which is much more difficult to solve 
than the initial value problem solved here. 

4 Conclusions 

In this paper, we have presented an efficient method 
to generate optimal UAV flight paths over hostile ter- 
ritory. The approach ca.n trade-off stealth versus path 
length, and is suitable for real-time implementation. 
It is also flexible, in that dynamic environments and 
pop-up threats are easily incorporated. 
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