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Multi-Objective Four-Dimensional Vehicle Motion
Planning in Large Dynamic Environments
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Abstract—This paper presents Multi-Step A∗ (MSA∗), a search
algorithm based on A∗ for multi-objective 4-D vehicle motion
planning (three spatial and one time dimensions). The research
is principally motivated by the need for offline and online motion
planning for autonomous unmanned aerial vehicles (UAVs). For
UAVs operating in large dynamic uncertain 4-D environments,
the motion plan consists of a sequence of connected linear tracks
(or trajectory segments). The track angle and velocity are im-
portant parameters that are often restricted by assumptions and
a grid geometry in conventional motion planners. Many existing
planners also fail to incorporate multiple decision criteria and
constraints such as wind, fuel, dynamic obstacles, and the rules of
the air. It is shown that MSA∗ finds a cost optimal solution using
variable length, angle, and velocity trajectory segments. These
segments are approximated with a grid-based cell sequence that
provides an inherent tolerance to uncertainty. The computational
efficiency is achieved by using variable successor operators to cre-
ate a multiresolution memory-efficient lattice sampling structure.
The simulation studies on the UAV flight planning problem show
that MSA∗ meets the time constraints of online replanning and
finds paths of equivalent cost but in a quarter of the time (on
average) of a vector neighborhood-based A∗.

Index Terms—Heuristic algorithms, multi-objective decision
making, path planning, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

AN IMPORTANT component in the operation of vehicles
in large 4-D (three spatial and one time dimensions) dy-

namic environments is motion planning. This involves finding
an optimal (least cost) or near-optimal sequence of 4-D states
that connect the initial vehicle state to a desired goal state
[1]. For many applications, it is necessary to plan offline (e.g.,
prepare a mission plan for regulatory approval) and replan
online when the planning assumptions are invalidated by in-
mission changes. The research is principally motivated by the
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operation of robotic vehicles, namely autonomous unmanned
aerial vehicles (UAVs) and, equivalently, autonomous underwa-
ter vehicles (AUVs).

UAVs and AUVs are characterized by the following:
1) operation in large outdoor environments; 2) movement in
three dimensions (x, y, z); 3) uncertain and dynamic operating
environment; 4) presence of environmental forces that affect
motion (winds or currents); and 5) differential constraints on
movement [2], [3]. Because of 2) and 3), the planning space
must be 4-D. Note that a dynamic environment refers not only
to moving obstacles but also to changing weather conditions.
This paper mitigates the uncertainty inherent in a dynamic
environment through online replanning and incorporation of
tolerances in the planning process. Online replanning in this
paper refers to the execution of a search (i.e., replan) during a
mission. It is assumed that the inputs to the planner are constant
during a replan; hence, there is significant time pressure on the
replanning process.

The motion plan is constrained by vehicle dynamics (such as
maximum climb/ascent rate), environmental constraints (e.g.,
static and dynamic obstacles and wind/current), and rules of the
air/sea. In addition, the planned path must satisfy (and optimize
for) multiple possibly conflicting objectives such as fuel effi-
ciency and flight time. Due to the “curse of dimensionality” [4],
it is not computationally feasible to plan in a high dimensional
search space consisting of all the aforementioned variables. It is
common, instead, to plan the path in the world space (x, y, z, t)
[1] by aggregating the decision variables into a single nonbinary
cost term [4]. This planning problem is a type of weighted
region path planning [5]. An optimal path search algorithm like
A∗ [6] is needed as the shortest path is not necessarily the least
cost path.

One of the unique UAV/AUV characteristics listed earlier
is the presence of wind (or currents). These constrain vehicle
movements affect the travel time and fuel consumption. In
the presence of wind, it is particularly important to have high
track-angle resolution as low track-angle resolution can result
in suboptimal paths that contain spurious turns [7], [8]. This is
a shortcoming of conventional search grids as the track angle is
in increments of 45◦.

Note that the 4-D motion planning as described here should
not be confused with trajectory planning, which finds a path
expressed in terms of the degrees of freedom of the vehicle and
velocity/angle rates [1]. Instead, a 4-D motion plan comprises
a georeferenced sequence of 3-D waypoints and the desired
track velocities between them. In this paper, such tracks are also
equivalently referred to as trajectory segments.

This paper presents Multi-Step A∗ (MSA∗), a method for
the 4-D vehicle motion planning based on variable length,
angle, and velocity trajectory segments. Section II reviews
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existing path planning techniques. Based on A∗ [6], the pro-
posed method is presented in Section III and shown to be cost
optimal. To take advantage of the variable trajectory segments,
a memory- and time-efficient multiresolution lattice structure is
proposed in Section IV. A simulation study of MSA∗ for the
UAV flight planning task is discussed in Section V. Analysis of
the simulation results and a comparison of MSA∗ with existing
works are discussed in Section VI.

II. EXISTING WORK

Much of the recent work in vehicle planning has focused on
techniques in computational geometry using a grid [7]–[16].
However, a shortcoming of many grid-based approaches (e.g.,
[14] and [16]) is that the resultant path is confined to track
angles that are multiples of 45◦. As a result, the path can be
suboptimal and may contain spurious turns [7], [8]. A lack
of regular high-resolution track angles also affects methods
based on Voronoi graphs (e.g., [11] and [17]), methods that
use probabilistic sampling (e.g., [18] and [19]), and, generally,
methods where the path angles are not considered (e.g., [15]
and [20]). A review of motion-planning algorithms is provided
hereinafter for the methods that address the requirements of
the vehicle motion planning vis-a-vis the track-angle problem,
wind/current effects, and multi-objective optimization.

A. Methods With High-Resolution Track Angles

A number of grid-based methods determine the track angle in
continuous space instead of sampling from predefined discrete
track angles. However, geometry-based methods in 2-D or 3-D
(or even 4-D) space, such as Theta∗ [8] and A3D [15], do
not find the optimal path. Field D∗ [7] and 3-D Field D∗ [13]
find the optimal path, but both assume a priori knowledge of
cell costs (which are used to derive the track angle and track
cost). This approach is infeasible in a 4-D search space as the
cost is dependent on the track angle. Nevertheless, it is shown
that a multiresolution search space can be used to mitigate the
memory and time complexity of the motion planning [1], [7],
[9], [13].

Pivtoraiko and Kelly [12] present an alternate method that
provides regular high-resolution track angles by defining a
successor operator (i.e., parent child cell relationships) that has
a predetermined number of successors at selected track angles.
Like Theta∗, parent cells are not necessarily adjacent to child
cells, hence, the notion of a vector neighborhood [1]. However,
the method is formulated for 2-D vehicle planning with no
consideration for winds/currents.

The framed quad/octree [9] enables the high-resolution track
angles by placing sample nodes on the boundaries of each
quad/octree decomposed cell. However, the transitions between
cells are again limited to increments of 45◦. Additionally,
neither [9] nor [12] consider the wind effects.

A number of existing planners model the wind effects using
weighted polygonal (or polyhedral) shaped regions [21]–[24].
However, these methods do not consider the multiple objectives
and are not suited for planning in a dynamic environment. This
is a similar shortcoming of AUV [14] and UAV [10] motion
planners that incorporate wind.

Finally, there are motion planners based on artificial evolu-
tion (e.g., [10], [18], and [19]) that plan in continuous space.

A shortcoming of evolutionary algorithms is the inability to
specify bounds on the computation time or solution optimality
[25]. This can be problematic for the online replanning (due to
real-time constraints) and for applications where determinism
is a regulatory requirement (e.g., DO178-B [26] for aviation
software).

B. Multi-Objective Planning Algorithms

None of the previously quoted methods explicitly address
the requirement of optimizing for multiple decision objectives,
although many incorporate the multiple path constraints (e.g.,
water currents and vehicle dynamics in [14]). Examples of
explicit multi-objective planning algorithms can be found in the
study of hazardous materials transportation [27]. These algo-
rithms combine a multi-objective decision function (typically,
a weighted sum) with a graph search algorithm (such as A∗ or
Dijkstra’s algorithm) on a grid [27]–[30] (refer to [31] for a
description). This methodology is also used by Gu [11] for a bi-
objective (risk and fuel objectives) UAV motion planner. These
multi-objective planning algorithms (e.g., [11] and [27]–[30])
almost universally adopt a global planning approach where
the track cost is calculated at a search time (much like a lazy
probabilistic roadmap [1]).

An alternative approach to multi-objective path planning is
to use a multi-objective search algorithm like [17] and [32].
However, these algorithms are computationally expensive and,
in the case of [32], restricted to acyclic graphs; note that graphs
derived from grids are cyclic.

A similar direct approach to multi-objective path planning is
logic-based planning. Three candidate approaches include the
hierarchical task network (HTN) [33], temporal action logic
[34], and multiflip satisfiability solver, which evaluates nonad-
jacent neighbors in logic space [35]. An application of the HTN
to indoor robot navigation is described in [36]. However, the
logic-based motion planning is generally computationally ex-
pensive, and the resultant plan is typically nonoptimal [1], [33].

It can be seen that the existing methods do not fully address
the multi-objective vehicle motion-planning problem.

III. MSA∗

The planning task is defined as finding a path P through a
roadmap S, starting at node s0 and terminating at node sG.
Each node s ∈ S is located at the center of a 4-D rectan-
gloid cell defined in the world space W (x, y, z, t). Assuming
a regular grid sampling of the search space, each node s
maps uniquely to a cell in W . Thus, s refers simultaneously
to both the cell and the node located in the center of each
cell. The global planning approach described in Section II is
adopted, whereby the tracks are evaluated online and the initial
roadmap is not explicitly represented (like with [20]). Instead,
the roadmap is defined implicitly through a successor (or neigh-
borhood) operator Γ where, for a given source (or parent) node
s, Γ(s) denotes a set of cell sequences γs′ ∈ Γ(s) which begin
at s and terminate at the successor (or child) node s′ ∈ S ′.

Consider the modeling of a vector neighborhood like [12]
where s′ does not necessarily lie adjacent to s. The successor
operator is assumed to denote a linear trajectory/track connect-
ing the center of cell s to the center of cell s′ (refer to Fig. 1).
It is assumed that the turns (possibly required between tracks)
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Fig. 1. Successor operator illustration. (a) Single 2-D trajectory segment and
the corresponding cell sequence. (b) Example 2-D successor operator showing
individual trajectory segments. Note that the trajectory segment terminates
in the center of the successor cell, which is not necessarily adjacent to the
source cell.

have a negligible impact on the overall path in terms of travel
time and fuel consumption. For each successor s′, the trajectory
intersects a sequence of cells between s and s′

γs′ = {sj+m−1 = s′‖sj = s, . . . , sj+m−2} (1)

where sj , . . . , sj+m−1 is a sequence of m cells and ‖ denotes a
conditional dependence, i.e., sj+m−1‖sj , . . . , sj+m−2 is inter-
preted as cell sj+m−1 via a sequence of cells sj , . . . , sj+m−2.
In the ensuing sections, Γ is derived for a 3-D world (Γ3D ∈ Γ;
see Section III-A) and then extended to four dimensions (see
Section III-B). This is possible as the search dimensions are
orthogonal.

A. Multistep Three-Dimensional Successor Operator

As illustrated in Fig. 1(a), it is possible to determine the
horizontal track angle θ and slope from the endpoints of each
trajectory segment. The vertical track angle φ and slope can be
similarly determined for a 3-D trajectory segment. In aviation,
the horizontal and vertical track angles are referred to as the
ground track angle and flight path angle, respectively. Note that
the vertical slope is given by the climb/descent rate and the
ground speed. The angles can then be used to determine the
cells that intersect the track using a variant of Bresenham’s pixel
algorithm [37]. Note that, because the vehicle controller has a
nonzero trajectory tracking error, it is necessary to include cells
whose edges/corners touch the trajectory line. This prevents the
possibility of the vehicle squeezing through an infinitesimally
small gap or “brushing past” as an obstacle. Doing so provides
an intrinsic tolerance to the navigational and controller uncer-
tainty as there is always a safety margin between the trajectory
segment and the boundaries of a cell.

Using Bresenham’s [37] line drawing concept, the determi-
nation of a 3-D cell sequence is based on the displacement
(nx, ny, nz) of the successor cell from the source in terms of
the number of cells in the x, y, and z dimensions, respectively.
This sequence is invariant to the physical dimensions of each
cell but assumes regular cells. The 3-D line equations are⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y = ny

nx
x, z = nz

nx
x, if |nx| ≥ |ny|, |nx| ≥ |nz|

x = nx

ny
y, z = nz

ny
y, if |nx| < |ny|, |ny| ≥ |nz|

x = nx

nz
z, y = ny

nx
x, if |nx| ≥ |ny|, |nx| < |nz|

y = ny

nz
z, x = nx

ny
y, if |nx| < |ny|, |ny| < |nz|.

(2)

Note that, as is done in [37], line symmetry properties are
exploited to avoid slopes greater than one. The cells in the
sequence are determined by selecting and then applying the
appropriate equation in (2) for each successor (nx, ny, nz).
The equation is evaluated at the midpoints between cells, i.e.,
0.5, 1.5, . . . , n − 0.5 cell widths. If the midpoint lies on an
edge, the cells that share that edge are included in the cell
sequence. If the midpoint intersects a corner point, all cells
that share that corner point are included. This produces a cell
sequence that has Manhattan stepping with a nonzero spacing
between the trajectory segment and cell boundaries. The hori-
zontal and vertical track angles θ and φ can be calculated from
the displacement, as shown in (3) and (4), respectively

θ = arctan
(

nxδx

nyδy

)
(3)

φ = arctan

(
nzδz√

(nxδx)2 + (nyδy)2

)
(4)

where δx, δy, and δz correspond to the x, y, and z dimensions
of each cell, respectively. Note that, as Γ is specified a priori,
there is no need to optimize the cell sequence generation
algorithm.

Consider the design of Γ3D. From (3) and (4), it can be
seen that arbitrary track angles are possible; however, this can
result in successors that are displaced by a large cell distance
(nx, ny, nz) from s. For example, a horizontal track-angle
resolution (i.e., the maximum angular distance between sample
points) of 45◦ is achieved with a maximum cell displacement of
1 (max(nx, ny) = 1, assuming square-shaped cells). However,
for a resolution of 26.6◦, a maximum cell displacement of two is
required [refer to Fig. 1(b)]. It is possible to reduce the physical
track distance by increasing the grid resolution (i.e., making
each cell smaller); however, this also increases the computation
time due to a larger search space. Thus, the design of Γ3D

is dependent on the available computation time, desired track
length, and angle resolution for a specific application.

B. Extending the Successor Operator to Four-Dimensional

Consider the extension of Γ3D to four dimensions where
each cell has dimensions (δx, δy, δz, δt); δt specifies a duration
of the time spent inside a 3-D cell. The vector neighborhood
concept can be extended to the time dimension such that s′ lies
at a discretized time level s′tl

that is displaced from stl
by ntl

time levels; ntl
corresponds to the track traversal time.

The cost of the traversal of a particular track (needed in
many search algorithms [1]) in the vehicle motion planning is
dependent on the track velocity. Due to the presence of wind,
it is not possible to predefine a set cruise velocity for each
successor in the 4-D successor operator Γ. However, given
a 3-D successor with displacement (nx, ny, nz), it is possi-
ble to generate multiple 4-D successors s′ with displacement
(nx, ny, nz, ntl

) where ntl
∈ Ntl

. The choice of successor time
level displacements Ntl

is application specific as it is dependent
on track lengths, knowledge of expected wind magnitudes, and
the minimum and maximum cruise velocities of the vehicle. For
a given Γ3D, the minimum and maximum cruise velocities can
be used to determine an initial estimate of the lower and upper
bounds, respectively, for Ntl

using (6) (assuming zero wind).
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Further refinement of Ntl
can be achieved through Monte Carlo

simulation over the expected wind conditions by inspecting the
resultant cruise and track velocities for a given choice of Ntl

.
Note that, for each successor, the cell sequence generated

using (2) can be extended to 4-D by simply calculating the time
level displacement ns

tl
for each cell s on the sequence⎧⎪⎨

⎪⎩
ns

tl
= ntl

ns
x

nx
if |nx| ≥ |ny|, |nx| ≥ |nz|

ns
tl

= ntl

ns
y

ny
if |nx| < |ny|, |ny| ≥ |nz|

ns
tl

= ntl

ns
z

nz
otherwise

(5)

where ns is the displacement of cell s from the source node.
Note that, in (5), the spatial dimension with the maximum
displacement is used to calculate the cell sequence quantized
time level displacements, as this gives the maximum sampling
resolution.

Given ntl
, the vehicle cruise velocity can be derived from the

track length via the track velocity �vt

|�vt| =

√
(s′x − sx)2 +

(
s′y − sy

)2 + (s′z − sz)
2

ntl
δt

. (6)

This track velocity is itself a sum of the cruise and wind velocity
vectors

|�vt| cos φ

(
sin θ

cos θ

)
= |�vc| cos φ

(
sinα

cos α

)
+

(
vwx

vwy

)
(7)

where θ and φ are the horizontal and vertical track angles,
respectively, �vc is the cruise velocity (e.g., the airspeed of
an aircraft), �vt the track velocity (e.g., the ground speed of the
aircraft), α is the vehicle heading angle, and (vwx

, vwy
) is

the horizontal wind magnitude. All angles are measured from
the true north in navigational tasks [38]. Note that (7) is
formulated in two dimensions instead of three as the horizontal
component of the track and track velocity is far greater than
the vertical for both UAVs [38] and AUVs [14]. The vertical
component of �vc and the wind are treated as constraints instead.
By separating the x and y components from (7) and then solving
the resultant simultaneous equations, it is possible to get an
expression for �vc given |�vt| and (vwx

, vwy
)

|�vc|=
√
|�vt|2 − 2|�vt|(vwy

cos θ + vwx
sin θ) + v2

wx
+ v2

wy
.

(8)

Note that we are not interested in the negative root which
corresponds to the traversal in the opposite direction.

The preceding section describes in effect a formulation of a
vector neighborhood (obtained using a successor operator) like
the one in [12] but for (x, y, z, t). Unlike [12], the ensuing sec-
tions describe a multistep variant of A∗ [6] (see Section III-C)
that enables the use of a variable successor operator Γs for each
node s. This variable operator enables the implementation of
a multiresolution search and also enables the imposition of a
structure on the search space. These are further discussed in
Section IV.

C. Search Algorithm

The pseudocode of the MSA∗ algorithm is listed in Fig. 2.
Note that s0 and sg refer to the start and goal nodes, respec-

Fig. 2. MSA∗ pseudocode. Note that at line 12, Succ(Γs(s)) extracts the
set of successor nodes s′ ∈ S′ where s′ is the last cell in each cell sequence
γs′ ∈ Γs(s).

tively. Like A∗, the nodes are placed on a priority queue sorted
according to the evaluation function f which is itself the sum
of the cost to come g and the estimated cost to go ĥ. In Fig. 2,
Queue.Insert refers to the addition of a node s′ to the queue
such that f(s∗) ≤ f(s) ∀ s ∈ Queue, where s∗ is the topmost
element in Queue. Queue.Pop is the removal of this topmost
element.

The key distinction between MSA∗ and A∗ lies in the cost
function c. A∗ computes the cost (a scalar value) as a function
of the cells s and s′, whereas the MSA∗ cost is a function of
multiple cells, as defined in the cell sequence [see (1)]

g(s′) = g(s) + c(s′ = sj+m−1‖s = sj , . . . , sj+m−2). (9)

The cost c is calculated using a two-step process. First, the de-
cision variables xi (e.g., fuel and risk) are uniquely mapped or
calculated from the cell sequence such that xi = ρi(s, . . . , s′)
where ρi is the mapping function. For example, the total risk
probability is the sum of the risk probability density value for
each cell on the cell sequence. Note that the constraints can
be imposed by setting c = ∞ if a particular decision variable
exceeds a specified limit (e.g., maximum risk). Otherwise, a
multicriteria decision making (MCDM) cost function is used to
transform the decision variables into a single cost term c where
c is nonzero and monotonic (i.e., c > 0). This second step could
be a weighted sum aggregation (like that used in [27]–[30]) or
a fuzzy mapping (e.g., [31]). Using a weighted sum approach,
each decision variable is mapped onto a commensurate scale
on the interval [0, 1] using a value function ui(xi). The final
cost is c = w0u0(x0) + · · · + wn−1un−1(xn−1) + δc where n
is the number of decision criteria and δc is a small positive value
to ensure c > 0. A comprehensive evaluation of the decision
objectives and decision variables for the UAV flight planning is
provided in [39] (refer to Section V-A for a brief summary).

D. Cost Optimality of MSA∗

It can be shown that MSA∗ will find the least cost path given
a predefined set of successor operators Γs for each node s ∈ S
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and an MCDM cost function c. As MSA∗ is derived from
A∗ [6], the cost optimality can be shown in a similar manner
as well.

Lemma 1: Consider any globally optimal path P ∗=(s0, . . . ,
sn). It can be shown that P ∗ is itself composed of optimal paths.

Proof: The optimal path for a given node sik
is a path

P ∗ = (s0, . . . , sik
) such that, for all possible paths P ∈ Π,

g(sik
‖P ∗) < g(sik

‖P ). Recall that any path is made up of an
integer number of trajectory segments K and that each segment
is represented by a cell sequence of length mj for segment j.
Thus, the index to a node (or cell) in P ∗ at the kth trajectory
segment is

ik = −k +
k−1∑
j=0

mj . (10)

For the case where k = K, the lemma is trivially true
by definition of P ∗

iK
as iK = n, P ∗

n = (s0, . . . , sn). Consider
the case for k = K − 1 trajectory segments, whose cell se-
quence PiK−1 = (s0, s1, . . . , siK−1) is a subset of the opti-
mal path P ∗. If PiK−1 is not a least cost path, then there
exists another path P ′

iK−1
= s0, s

′
1, . . . , s

′
iK−2

, siK−1 such that
g(P ′

iK−1
) < g(PiK−1). However, as the (K − 1)th cell se-

quence siK−1 , . . . , siK
is unchanged, then, given (9), the cost

term c is unchanged. This implies that there exists a path
P ′

iK
= (s0, s

′
1, . . . , s

′
iK−2

, siK−1 , . . . , siK
) such that g(PiK

) <

g(P ∗
iK

), contradicting the definition of P ∗
iK

. Therefore, PiK−1

must also be an optimal path. By mathematical induction, any
optimal path P ∗ must itself be composed of optimal paths. �

Theorem 1: If the heuristic is admissible [6], then MSA∗ will
find the optimal path if one exists. An admissible heuristic ĥ is
an estimate of the cost to go that is always less than the actual
cost to go, ĥ(sj , sg) ≤ h(sj , sg).

Proof: Consider an optimal path P ∗ = (s0, . . . , sg) which
contains K trajectory segments. On an optimal path, g(sj) =
g∗(sj) for all j = (0, 1, . . . , iK). From line 15, because
ĥ(sj , sg) ≤ h(sj , sg), therefore, f(sj) ≤ f ∗(sj).

In the trivial case where K = 0 (i.e., s0 = sg), MSA∗ dis-
covers the solution in one iteration. During the initialization
(lines 1–7 in Fig. 2), s0 is placed on the queue with cost g(s0) =
g∗(s0) = 0. Upon the expansion of s0, MSA∗ terminates.

Consider the case where K = 1, i.e., sg ∈ S ′
0 where S ′

0 =
Γs0(s0). Let S∗ denote the set of nodes on the queue that lie on
an optimal path. After one iteration (i.e., the expansion of s0),
at least one of the successors s′0 is a member of S∗. Consider
the contrary where none of the nodes s′0 ∈ S ′

0 lie on an optimal
path and/or are not on the queue. There are two possibilities,
one is that none of the successors are reachable (in which case,
no path exists) or at least one of them lies on a least cost path.
Note that, if a path exists, then an optimal path also exists.

For this latter case, given a node s′0, an optimal path
(s0, . . . , s

′
0) that does not contain any nodes in S ′

0 must exist
because, by Lemma 1, an optimal path (s0, . . . , sn) comprises
optimal paths (s0, . . . , sn−1), (s0, . . . , sn−2), . . . and none of
the nodes in S ′

0 lie on an optimal path (by assumption). This is
not possible; hence, at least one node s′0 must lie on an optimal
path in which case, by line 16, s′0 would be added to the queue
at the expansion of s0. Therefore, where a path exists, S∗ �= ∅
and sg ∈ S∗

0 for the scenario K = 1.

Fig. 3. General lattice structure with (x, y, z) dimensions shown.

The preceding argument can be extended to show
that, up until the algorithm termination, S∗ �= ∅.
Let S ′

k denote the set of nodes generated by
Γsik−1∈S′

k−1
(Γsik−2∈S′

k−2
(. . . Γs0(s0)))—i.e., all nodes

that can be reached in k trajectory segments. From the previous
discussions, all nodes s : s ∈ S∗, s ∈ Sk (k = 1) are placed
on the queue after the first iteration. If the optimal paths of
length k + 1 exist, the expansion of s : s ∈ S∗, s ∈ Sk must
yield nodes s′ : s′ ∈ S∗, s′ ∈ Sk+1. Otherwise, as before, there
would exist nodes s′ /∈ Sk that result in the optimal paths of
length k + 1 trajectory segments which is not possible. Hence,
S∗ �= ∅.

Because Γs is a finite set for all s ∈ S and because the tra-
jectory segments incur a nonzero and nonnegative cost c, there
are only a finite number of nodes such that f(s) ≤ f ∗(sg) =
f ∗(s0). Therefore, as S∗ �= ∅, the nodes on the optimal path
P ∗ = (s0, si1 , . . . , sik

= sg) are expanded (in sequence) in a fi-
nite number of iterations, terminating with the expansion of sg.

It is not possible to terminate without finding the optimal path
if one exists. Consider the scenario where MSA∗ terminates
such that f(sg) = g(sg) > f ∗(s0). However, by the aforemen-
tioned analysis, there exists a node s ∈ S∗ just before the
termination such that f(s) ≤ f ∗(s0) < f(sg). Hence, s would
be expanded instead of sg, contradicting the assumption that
MSA∗ would have terminated. Therefore, MSA∗ will find an
optimal path (s0, . . . , sg) in a finite time where such a path
exists. �

IV. MULTIRESOLUTION LATTICE STRUCTURE

A class of variable successor operators that can be used
to implement a lattice-based multiresolution search space for
the purposes of reducing the computation time is presented. The
use of variable successor operators Γs is made possible by the
MSA∗ search algorithm. As before, the 3-D lattice structure
is presented first, followed by a conceptual extension to 4-D.
It is shown that lattice-based MSA∗ reduces the size of the
search space without sacrificing the track-angle resolution or
soundness [40].

A. Three-Dimensional Lattice

A 3-D illustration of the lattice structure is presented in Fig. 3
with a 2-D cutaway (x–y) view showing the source-successor
trajectory segments in Fig. 4. The lattice comprises a series of
planes parallel to the x–y, y–z, and x–z Cartesian planes at
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Fig. 4. Top (x–y) view of lattice showing trajectory segments for lattice
positions (a) (0, 0) and (b) (0, 2).

regular intervals of Λx, Λy , and Λz (defined in terms of the
number of cells) in the x, y, and z planes, respectively.

The lattice design methodology is a three-step process. First,
a series of base 3-D successor operators Γ0 is chosen, one
for each search space resolution. The choice of Γ0 takes into
account the required track-angle resolution and track length,
both of which are related to the sampling density. Γ0 must be
such so that, in any plane x–y, x–z, or y–z, all the successors
lie on the border of a rectangle centered at the source node [as
shown in Fig. 4(a)].

Using Γ0, it is then possible to define the spacing between
the planes in the lattice Λx, Λy , and Λz using

Λx = sup
γnx

{γ ∈ Γ0 : γnx
≥ γny

, γnz
}

Λy = sup
γny

{γ ∈ Γ0 : γny
≥ γnx

, γnz
}

Λz = sup
γnz

{γ ∈ Γ0 : γnz
≥ γnx

, γny
} (11)

where sup denotes the supremum operator (least upper bound).
Note that if the start or goal nodes do not lie on the lattice, it is
a simple matter to connect those nodes to the one that is on the
lattice using a local search technique (refer to [1]).

Using this lattice structure, it is then possible to define
individual Γs operators for each node on the lattice. This is
shown for a 2-D lattice for the sake of clarity in Fig. 4. Due
to the regularity of the lattice, the nodes located at equivalent
positions on the lattice share the same successor operator Γ�p

for position �p. Two positions are equivalent if and only if they
are separated by the integer multiples of Λx, Λy , and Λz cells. A
lattice position �p can be uniquely defined based on the modulus

�p = (mod(x,Λx),mod(y,Λy),mod(z,Λz)) . (12)

Referring to Fig. 3, the total number of unique lattice positions
np is

np = ΛxΛy + Λx(Λz − 1) + (Λy − 1)(Λz − 1). (13)

Consider the case where the source node is at lattice position
(0, 0, 0), i.e., at the intersection of the lattice planes [see
Fig. 4(a)]. The trajectory segments are chosen to terminate at
the successors that lie on the border of a rectangle centered
on the source node with dimensions of (2Λx, 2Λy, 2Λz) cells.
Therefore, Γ�p=(0,0,0) = Γ0. For the cells located at different
positions on the lattice [refer to Fig. 4(b)], the successors
are chosen to maximize the number of identical successors

Fig. 5. Multiresolution lattice with Λx = Λy = 3 on the left and Λx =
Λy = 6 on the right. Selected trajectory segments are shown for the sake of
clarity.

to Γ(0,0,0). Additionally, where possible, the successors are
chosen to terminate at lattice position (0, 0, 0). This ensures
that the same track angle can be maintained over consecutive
trajectory segments to avert unnecessary turns.

B. Three-Dimensional Multiresolution Lattice

The purpose of multiresolution sampling is to reduce the
total number of nodes and thus reduce the computation time.
In many applications, it is possible to divide the search space
into regions of fine sampling resolution and regions of coarse
sampling resolution. In the UAV flight planning, for example,
a fine sampling resolution is required at lower altitudes, but
a coarse sampling resolution can be used for high-altitude
en route airspace. It is easy to implement the multiresolution
search by using multiple base successor operators Γi

0.
Consider the division of the search space into a series of N

rectangular-prism-shaped regions, each of which has a lattice
resolution of (Λi

x,Λi
y,Λi

z), i = 1, 2, . . . , N and a base succes-
sor operator Γi

0. Note that N is typically a small number as it is
necessary to check the bounds of each region at every iteration.
Each region must have dimensions that are a multiple of Λi

x,
Λi

y , and Λi
z . This ensures that all the trajectories must terminate

on and originate from a lattice plane separating the two regions
(refer to Fig. 5).

Furthermore, assume that, for any two adjacent regions i
and j, Λi

x, Λi
y, and Λi

z are integer multiples of Λj
x, Λj

y , and
Λj

z , respectively. This way, the successors in Γi
0 are displaced

at the integer multiples of those in Γj
0, which ensures that all

horizontal track angles [calculated using (3)] in region j also
exist in region i (see Fig. 5). Unfortunately, this is not the case
for the vertical track angle even though the angles in the x–z
and y–z planes are replicated in region i. To avoid a large
increase in the number of successors, it is also possible to
filter out the successors in Γi

0 that are on the track angles not
represented in Γj

0.
The aforementioned multiresolution lattice provides a means

for the fine and coarse sampling corresponding to smaller and
larger values of Λ, respectively. There is no reduction in the
track-angle resolution for the coarsely sampled regions as larger
values of Λ enable higher track-angle resolutions. Additionally,
each track is evaluated at the cell resolution using the cell
sequences defined in Section III-A. This guarantees the path
soundness [40, Ch. 25.6] by avoiding the problem of mixed
cells (which contains free space and obstacles [1]).
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C. Four-Dimensional Multiresolution Lattice

The extension of the previous 3-D lattice to four dimen-
sions involves the selection of a suitable set of values ntl

∈
Ntl

for each 3-D successor in Γ�p using the methodology
described in Section III-B. The full 4-D multiresolution lattice
structure is implicitly defined through the variable successor
operators where, at each iteration of the MSA∗ search, Γ�p is
selected based on (12) and the boundaries of each Γi

0 region.
This approach enables consistent track-angle resolution across
the fine- and coarse-resolution regions without sacrificing the
soundness.

In addition, the lattice structure reduces the memory usage.
The underlying cell grid of MSA∗ contains NxNyNzNtl

nodes
where Nx, Ny , Nz , and Ntl

are the total number of sample
points in the x, y, z, and t dimensions, respectively. The total
memory requirement (i.e., number of nodes) N for a lattice can
easily be derived by counting the number of nodes in the x, y,
and z planes (refer to Fig. 3) and then subtracting the overlap
regions

N = Ntl
(NyNzαx + NxNzαy + NxNyαz − αxαyNz

− αxαzNy − αyαzNx + αxαyαz) (14)

where αx = (Nx − 1/Λx) + 1� (and, similarly, for y and z)
and all division operations are the integer divisions. Note that
the NyNzαx term in (14) counts the number of nodes in the
x plane for all x planes, where αx is the number of x planes
(similarly, for y and z). The term −αxαyNz subtracts the
overlaps between the x and y planes (similarly, for the overlaps
between the x and z planes, and y and z planes), and αxαyαz

represents the overlap between the αxαyNz , αxαzNy , and
αyαzNx terms.

V. EXPERIMENTAL ANALYSIS

This section discusses some of the practical aspects of im-
plementing the proposed algorithm, including the evaluation
of MSA∗ against an existing vector neighbor-based search
algorithm (like [12]) in the simulation. Such a comparison is
used to evaluate the computational efficiency of MSA∗.

A. UAV Flight Planning Application

The UAV mission flight planning problem was chosen to
provide a practical context for the evaluation of MSA∗. This
is an important application as onboard mission flight planning
(particularly the online replanning) has been shown to be a
key enabler in the operation of UAVs in the National Airspace
System [39]. The mission being undertaken is the delivery of a
medical package to a remote location using a small UAV. This
mission is operated under visual flight rules using Australian
Civil Aviation Regulations [41]. The medical delivery task is
ideal for evaluating a 4-D search algorithm due to the presence
of multiple decision criteria, dynamic elements in the operating
environment, and the significant effect of wind on a small UAV.
The three major decision objectives for the medical package
delivery mission are safety, the rules of the air, and mission
efficiency [39].

The safety objective is modeled with the aircraft separation
management, storm cell avoidance, and population risk criteria.

For simulation purposes, the aircraft separation requirement
(5-nmi horizontal and 1000-ft vertical) for en route airspace
is adopted. The cylindrical-shaped separation region is rep-
resented with an approximate probabilistic model [39]. This
model is similarly used to describe storm cells. Finally, the
population risk criterion refers to the minimization of the risk
presented to people and property on the ground in the event
of a crash. For the purposes of simulation, this risk value
is approximated with a normalized population density (NPD)
value.

The flight plan must also conform to the rules of the air,
such as the cruising level rule, low flying restrictions (minimum
altitude above ground level), and segregated airspace (avoiding
no-fly zones). For aircraft flying on headings from 0◦ to 179◦,
the permissible flight levels are at odd multiples of 1000 ft
plus 500 ft above mean sea level (AMSL) (e.g., 1500, 3500,
and 5500 ft AMSL). For headings between 180◦ and 359◦, the
cruise levels are at even multiples of 1000 ft AMSL plus 500 ft
(e.g., 2500, 4500, and 6500 ft AMSL). The cruising level rule
is intended to minimize the risk of a head-on collision and is
mandatory above 5000 ft.

The flight plan also needs to optimize for the objectives of the
mission itself (i.e., the delivery task). These objectives include
the delivery time (i.e., the time of arrival at the goal node) and
fuel consumption. With a 4-D search, it is possible not only to
find a path that minimizes the delivery time but also to designate
a specific delivery time or acceptable time window (like with
[16]). The flight time, along with the cruise velocity, altitude,
and rate of climb, is the parameter used to optimize the fuel
consumption.

These decision variables, in combination with the dynamic
constraints of the aircraft, are used to calculate the cost term c
in (9). Note that, for the purposes of planning, it is assumed that
all situational awareness information (e.g., wind information
and information about other aircraft) is available. For further
details and candidate data sources for each decision variable,
refer to [39]. Note that, as the dynamic constraints are closely
linked with the chosen successor trajectory segments in Γ, these
are discussed together in the following section.

B. Experimental Setup

The primary purpose of this experimental analysis is to
compare the computational efficiency and solution path of
the proposed algorithm with that of existing algorithms. In
these comparisons, each test algorithm uses a different (set of)
successor operator(s) but the same cost function c (a weighted
sum of the utility values) and heuristic function h.

1) Test Algorithms: Two different variants of MSA∗ are
compared against a benchmark algorithm, Vector A∗, on 1000
randomly generated planning scenarios. Vector A∗ is a direct
extension of A∗ using a vector neighborhood (like that used in
[12]). The successor operator is chosen to reflect the base suc-
cessor operator used in the other test algorithms and is shown in
Fig. 6. Using this successor operator, there are 360 successors
for each source node. Vector A∗ is in effect a special case of
MSA∗ where Γs is constant throughout the entire search space.
Due to the popularity of A∗ and related algorithms in robotics
[42], Vector A∗ serves as an ideal benchmark of calculation
time and path cost for a deterministic 4-D planning algorithm
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Fig. 6. Chosen Γ0 successor operator, showing (center) source cell and
successor cells joined by trajectory segments. Λx = 3, Λy = 3, Λz = −∞,
and Ntl = {2, 3, 4}min. Note that Λz = −∞ corresponds to a lattice where
there are no z-planes.

with selectable track-angle resolution. Two variants of MSA∗,
MSA∗1 and MSA∗2, are tested against the benchmark. MSA∗1
uses a single fine-resolution lattice based on Γ0, as shown in
Fig. 6. MSA∗2, on the other hand, uses a multiresolution lattice
where N = 2. A fine-resolution lattice (based on Γ0 in Fig. 6) is
used for altitudes below 7000 ft, and a coarse-resolution lattice
(Λx = 6, Λy = 6, Λz = −∞, and Ntl

= {4, 6, 8}min) is
used for altitudes above 7000 ft.

All the experiments were performed on a 3.3-GHz Intel Core
2 Duo QX6850 CPU with 4 GB of physical RAM running at
32-b Microsoft Windows XP.

2) Dynamic Constraints: The dynamic constraints of the
aircraft were considered in the selection of Γ0 in Fig. 6. Often-
times, these dynamic constraints are modeled with a minimum
turn radius [1]. Assuming a maximum airspeed of 126 kn, a
bank angle of 30◦, and a force of 1 g (32.2 ft/s2), the worst case
turn radius is approximately 0.4 nmi (refer to [38, (3.9.10)]).
As the turn radius is less than half the cell size, it is possible to
execute a 180◦ turn within the bounds of a single cell. However,
it is still desirable to minimize the turn angle as it is difficult for
the flight controller to execute such a turn with accuracy under
strong wind conditions. The turn angles are further discussed in
Section V-C.

For UAV operations, it is also necessary to incorporate
climb/descent rate constraints and a maximum airspeed con-
straint (a constant value). The maximum climb rate, however,
decreases with altitude and is zero at the aircraft ceiling [38]. At
sea level, the maximum climb rate for a small UAV is limited
to approximately 1000 ft/min [43]. This matches the maximum
climb rate achieved using Γ0 under no-wind conditions

max
nz

(nzδz)

min
ntl

∈Ntl

(ntl
δt)

= 1000 ft/min. (15)

3) Simulation World: The simulation worlds were generated
randomly to enable a Monte Carlo evaluation of the test al-
gorithms. Each simulation world comprises a terrain map, no-
fly zones, other aircraft, storm cells, wind map, and population
density map (as a simple model of risk presented to the people
and property on the ground). For each world, a number of start

and goal pairs were randomly chosen. The mission area for
each world was arbitrarily chosen to be 50 nmi × 50 nmi ×
15 000 ft × 90 min with a cell resolution of 1 nmi × 1 nmi ×
1000 ft × 1 min (1 nmi = 1852 m and 1 ft = 0.3048 m). Note
that the maximum distance of the search area approximately
matches the maximum operating range of the RQ-7A Shadow
UAV [43].

An artificial terrain map is randomly generated through
the summation of bivariate Gaussian functions with randomly
chosen parameters (A, b, c, σ, n). The population density is also
generated using this equation

z(x, y) =
n∑

i=0

Aie
− (x−bi)

2+(y−ci)
2

σ2
i . (16)

The maps for the other decision variables can also be randomly
generated through a random selection of the parameter values.
For example, the parameters for a cylindrical aircraft separation
zone are position, velocity, standard deviation, radius, and
height. The velocity is assumed to range between 50 kn and
a speed limit (for flights below 10 000 ft) of 250 kn [41]. The
radius and height are specified in aviation regulations. Simi-
larly, the storm cells are randomly generated with an average
radius of 13.5 nmi and a height of 8 nmi [44, Fig. 5]. The
rate of movement of a storm cell is assumed to be between 10
and 40 kn for altitudes between 0 and 15 000 ft [44, Fig. 1]. A
method for modeling each of the remaining decision variables
is provided in [39].

Finally, a simple algorithm was used to generate wind maps
that mimic the real-world winds. First, a number of seed nodes
are randomly generated at different positions (x, y); each seed
is characterized by a position �pi, a direction φi, and a vector
of wind magnitudes �mz for each altitude level z. For each
node s = (x, y, z) in the world space, a weighting vector �u is
calculated

ui = a0|�di| + a1|∠�di − φi| (17)

where �di = �s − �pi and a0 and a1 are the weights. The largest
element in �u is then scaled by a∗; this gives the “winning seed”
more weighting. For a given node s, the wind magnitude is
fm(s) = �u · �mz . The wind magnitude for each altitude level
is randomly chosen based on the average wind speeds (refer
to [39]). The direction fd is calculated in a similar manner,
fd(s) = �u · �φ + σz where σz is a small random perturbation
added to simulate the wind shear.

C. Results

A Monte Carlo simulation of the three test algorithms is
performed on 1000 randomly generated planning scenarios.
The results of these simulations are presented hereinafter and
evaluated with respect to computation time and path cost. In
addition, the algorithms are also evaluated on three special case
test scenarios. These were constructed to determine the effect
of local minima and to test the adaptability of the planner to
situations where the vertical wind velocity exceeds the aircraft
performance.

An illustration of a typical multi-objective planning scenario
is provided in Figs. 7 (showing other aircraft and no-fly zones)
and 8 (risk map). The solution paths using Vector A∗, MSA∗1,
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Fig. 7. Example planning scenario showing no-fly zones and other aircraft at t = 120 s. Note that, for the aircraft and weather, the inner cylinder represents the
separation zone/storm cell extents (around the expected position) and the outer cylinder is the 2σ uncertainty boundary (which grows with time). Note also that
the red X marks the goal position.

Fig. 8. Example planning scenario risk represented by an NPD map.

and MSA∗2 are also shown on each of these figures. In Fig. 7,
all three planners select a path that avoids an aircraft on a
converging course by descending and heading in an easterly
direction. Once a risk of collision is averted, the paths continue
in a shortest path fashion toward the goal (marked by a red
cross). There are deviations only to avoid terrain (where the
paths hop over a mountain in Fig. 7) and to route around high-
risk (population density) areas (see Fig. 8). Note that, as shown
in Section III-D, each algorithm finds a path that satisfies all the
given constraints while minimizing the overall path cost (which
is a multi-objective cost function).

1) Computation Time: The mean and the standard deviation
for the computation time (μt and σt, respectively), along with

TABLE I
COMPUTATION TIME AND LOOP COUNT

Fig. 9. Normalized frequency histogram of speed increase of MSA∗1 and
MSA∗2 to Vector A∗.

the minimum and maximum computation times, and the loop
count (μn and σn, respectively) are presented in Table I for each
test algorithm. From the results, it can be deduced that a lattice-
based successor operator can significantly reduce the total com-
putation time and that further time savings can be achieved with
a multiresolution lattice. A cumulative histogram of the speed
increase is provided in Fig. 9 along with a statistical summary
of the speed increase in Table II. For the test resolution level,
Vector A∗, MSA∗1, and MSA∗2 are all suitable for the onboard
replanning as the computation time is well within the minimum
track traversal time of 2 min, as specified in Ntl

.
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TABLE II
SPEED INCREASE OVER VECTOR A∗

TABLE III
PATH COST RATIO

Fig. 10. Cumulative histogram of relative path cost.

2) Total Path Cost: The mean μc and the standard deviation
σc in the ratio of the path cost between MSA∗1, MSA∗2, and
Vector A∗ are presented in Table III. A cumulative histogram of
the ratios is illustrated in Fig. 10. As the successor operator Γ�p

in MSA∗1 is largely similar to Γ in Vector A∗, it is not surprising
to find that both return paths are of approximately equivalent
cost. On a particular note, however, is the fact that, on average,
MSA∗2 finds paths that are only 3.3% costlier than Vector A∗.
Therefore, it can be seen that MSA∗ finds paths of equivalent
cost but with significantly less computation time.

It is observed that each of the three test algorithms returns
a solution path that tends to follow the profile of a straight
line (shortest path). This is attributable to the minimization
process of A∗ and the fact that all trajectory segments have a
nonzero and nonnegative cost value. As a result, the turn angles
are typically small even without the explicit optimization of
turn angles. The mean turn angles (and standard deviations) for
Vector A∗, MSA∗1, and MSA∗2 are 11.7◦ (19.0◦), 12.7◦ (22.4◦),
and 16.4◦ (21.9◦), respectively.

D. Special Cases

It is widely acknowledged that A∗ and best first search
algorithms in general require significantly more computation
time in the presence of local minima [1]. This was tested for
the single and double bug trap case, as recorded in Table IV; the
double bug trap case is illustrated in Fig. 11. It can be seen that,
even though the absolute computation time is approximately

TABLE IV
COMPUTATION TIME

Fig. 11. Double bug trap case.

Fig. 12. Mountain wind simulation. Solution is found in 5.14 s.

double to 2.5 times the mean obtained in the previous Monte
Carlo simulations, the relative computation time between Vec-
tor A∗, MSA∗1, and MSA∗2 remains approximately the same
as before.

A simulation scenario which mimics the presence of strong
up/downdrafts in mountainous regions (where the vertical wind
velocity can exceed the vehicle’s climb rate) is depicted in
Fig. 12. Even though a variety of wind conditions was simu-
lated in the previous Monte Carlo experiment, this experiment
specifically studies the effect of wind by setting other decision
variables (e.g., no-fly zones, other aircraft, storm cells, and risk)
to zero. As shown in Fig. 12, only MSA∗2 successfully finds a
traversable path that satisfies the aircraft climb constraints. The
chosen path climbs in a switchback pattern before “hopping
over” the mountain. Recall that, as the aircraft’s maximum
climb rate decreases with altitude, it is necessary to climb to
13 500 ft to accommodate the loss of altitude in the downdrafts
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region. The reason that MSA∗2 successfully finds a path while
Vector A∗ and MSA∗1 fail is the higher climb and descent rate
required by the fine-resolution successor operator. The same
vertical distance is covered in a shorter time using the fine-
resolution operator (e.g., 1000 ft in 2, 3, or 4 min) compared to
the coarse-resolution operator (e.g., 1000 ft in 4, 6, or 8 min).

VI. DISCUSSION

This section reviews the proposed algorithm with respect to
the existing works in light of the practical simulation results and
theoretical findings.

A. Online Replanning

The primary objective of the simulation experiments pre-
sented in Section V is to determine whether the algorithm is
fast enough for the online replanning. The online replanning
is needed to mitigate the uncertainty and unpredictably of an
outdoor operating environment. Consider the practical imple-
mentation of a planner (such as MSA∗) on a UAV. A replan is
triggered when the environment changes or when the vehicle
deviates beyond the tolerance bounds on the originally planned
path. It is assumed that a predictor module provides the planner
(e.g., MSA∗) with a start node such that the time required to
reach the start node (from the current state) is a conservative
estimate of the planning time. Thus, the planner completes
the planning (while the UAV is flying under reactive local
control) prior to reaching the predicted start node—if this is
not the case, the process is repeated. In practice, if the planning
time is short relative to the dynamics of the mission (i.e., any
changes to the predicted operating environment are within the
tolerance bounds during the planning), this would not introduce
instability into the overall control and planning loop.

An indicator of the available planning time can be derived
from the minimum track traversal time as the motion plan is
made up of discrete trajectory segments (i.e., tracks). For the
successor operator selected in Fig. 6, the mean planning times
for MSA∗2, MSA∗1, and Vector A∗ (4.46, 9.23, and 19.25 s,
respectively) were found to be much smaller than the minimum
track traversal time (2 min). All three test algorithms were also
shown to be capable of finding a path within the time constraints
of the online replanning for environments containing deep local
minima and narrow escape passages (as per Fig. 11).

In these experiments, it was found that the proposed al-
gorithm offered an approximately twofold reduction in the
computation time. Further reductions were obtained by using a
multiresolution lattice. This increased speed is significant when
planning over a larger search space or on a more difficult search
space. For a 100 nmi × 100 nmi × 15 000 ft × 180 min search
space, a similar Monte Carlo experiment found that MSA∗2 is
still able to meet the requirements for the online replanning with
a mean planning time of 48.25 s and a standard deviation of
20.62 s (which is less than the minimum track traversal time of
2 min). However, Vector A∗ does not meet the requirements as it
takes approximately four times the computation time. Similarly,
when presented with local minima, which are known to be
difficult to solve for best first search algorithms like A∗, the
computational efficiency of MSA∗ over Vector A∗ is significant
in meeting the online replanning constraints [1].

Fig. 13. Number of nodes in the search space for different values of Λ.
Note that Λz = −∞ corresponds to the constrained vertical-track-angle case
described in Section IV-A.

The previous discussion of the algorithm computation time
assumes that, in each case, we plan from scratch. This ap-
proach of always discarding previous planning information
was adopted because, in applications such as a UAV package
delivery, online changes can occur anywhere in the search map
and affect large swaths of the search space. If a large number of
nodes are changed and/or changes occur close to the goal node,
replanning algorithms like D∗ and D∗ Lite are less efficient than
one that plans from scratch [42]. The presence of a fast moving
aircraft and storm cells, for example, can affect large areas of
the search space that are not necessarily localized around the
vehicle’s current position. Hence, it is more efficient to plan
from scratch each time.

Due to the time critical nature of the online replanning, it is
preferable to use a fast and near-optimal planner rather than an
optimal planner which may be too slow. Under these conditions,
MSA∗2 is the best candidate for the online replanning out of the
three test algorithms.

B. Lattice Structure

The computational efficiency of MSA∗ compared to Vector
A∗ can be attributed to a smaller lattice-structure-based search
space compared to a full 4-D grid. With the exception of the
successor operator and cell sequence based sampling, Vector
A∗ is virtually identical to MSA∗. Using (14), a plot of the
number of nodes for a search space of dimensions 50 × 50 ×
15 × 90 given different values of Λ assuming Λx = Λy is
shown in Fig. 13. Note that the memory required in a full grid
corresponds to the case where Λx = 1, Λy = 1, or Λz = 1.

From Fig. 13, it is evident that larger values of Λ produce a
lattice structure with fewer sample nodes. However, the corre-
sponding successor operator Γs has potentially more successors
per node with greater track-angle resolution and a greater track
length. As a result, fewer search iterations are required, but
each iteration incurs more computation time. For example, it is
possible to evaluate 17 400 nodes/s (on average) using MSA∗1,
whereas only 14 750 nodes/s is possible (on average) using
MSA∗2. It can be seen that the variable successor operator Γs

is a crucial application-specific design parameter that influences
the path cost, the traversability of the path, and the computation
time. For the demonstration for UAV applications, it has been
shown that the selected fine-resolution and, particularly, the
multiresolution successor operators are effective at delivering
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a solution of comparable cost with significant savings in the
computation time. The use of a coarse-resolution successor
operator Γs for high altitudes in MSA∗2 is particularly suited
to the UAV planning because of the scarcity of obstacles and
reduced climb rate at high altitudes (refer to Section V-D).

The lattice structure presented here is similar to the framed
quad/octree presented by Yahja et al. [9]. A key improvement
in terms of 3-D sampling is that the proposed lattice comprises
sample planes that are one cell wide (see Fig. 4), whereas
that used in framed octree is two cells wide [9, Fig. 4]. This
results in fewer nodes in the search space and hence reduced
the memory and computation time requirements. Additionally,
the track angle in a framed octree is constrained to intervals
of 45◦ when transitioning between quadtree nodes. Finally,
the proposed method guarantees the path soundness by sam-
pling each trajectory segment at the same high-resolution cell
size, thus avoiding the problem of mixed cells when using
cell-decomposition-based methods (such as quad/octree-based
methods like [9]).

C. Uncertainty

MSA∗ returns a path comprising a sequence of cells which
form a corridor in 4-D space around the planned trajectory.
This differs from the existing vector neighbor-based methods,
like [12], which do not explicitly associate cells or a volume of
space with each trajectory segment. Such a cell sequence pro-
vides an inherent tolerance to uncertainty. This approach avoids
the intractability of directly incorporating the uncertainty into
the search space (using methods such as Markov decision
processes) for a large high-dimensional search space [1].

The level of tolerance can be determined by finding the
minimum perpendicular distance d between the track and the
cell boundaries for each cell on the trajectory segment. This is
shown in Fig. 14 where

−−→
AB is the trajectory segment and

−−→
DC is

the perpendicular distance to an exterior corner of a cell on the
sequence γs′ . An exterior corner is one that is not completely
enclosed by adjacent cells. The angle θ can be determined by
the dot product of vector AB and AC

−−→
AB · −→AC = |−−→AB||−→AC| cos θ. (18)

In �ADC, as ∠ADC = 90◦ (by definition), then AD =
AC cos θ. The position of D can then be determined using a
simple vector line equation and AD

D = �A +
−−→
AB

|−−→AB|
|−→AC| cos θ. (19)

Because the cell sequence generated using (2) only includes
cells that intersect the track, if D does not lie within the cell,
then that particular corner is ignored. Otherwise, the perpendic-
ular distance DC is

|−−→DC| = |−→AC| sin θ. (20)

The value of d is determined by taking the minimum DC value
for all corners of all cells in γs′ . Note that θ = 0 implies that
the trajectory intersects a cell edge/corner, in which case all ad-
jacent cells were already included in the cell sequence. Hence,
this implies a nonexterior cell corner. For the successor operator

Fig. 14. Illustration of a cell in the cell sequence for a given trajectory
segment AB.

depicted in Fig. 6 and a 3-D cell size of 1 nmi × 1 nmi ×
1000 ft, the minimum 3-D tolerance is 166 ft, and the minimum
horizontal (x–y) tolerance is 0.14 nmi. Note that all transition
maneuvers (i.e., turns) needed to transition between tracks
are assumed to be of negligible cost compared to the tracks
themselves. These maneuvers are assumed to stay well within
the boundaries of the cell sequence.

It is possible to modify the cell sequence returned by the
method described in Section III-A to enforce a minimum tol-
erance constraint (3-D or horizontal only). For each exterior
corner of each cell that does not satisfy the distance constraint,
it is a simple matter to include all cells adjacent to that corner
to increase the minimum tolerance. This procedure is repeated
until all exterior corner points satisfy the minimum tolerance.
The time level of each added cell can be determined in the same
manner as in (5).

VII. CONCLUSION

This paper has presented MSA∗, a method for motion plan-
ning using a variable successor operator that finds the least
cost paths. A variable successor operator enables the variable
track length, angle, and velocity trajectory segments that are
modeled using a computer-graphics-inspired cell sequence.
This provides an inherent tolerance to uncertainty based on
the minimum distance between the track and cell sequence
boundaries.

Additionally, a variable successor operator enables the im-
position of a multiresolution lattice structure on the search
space which drastically reduces the number of search nodes
and search time. The extensive simulations for a UAV flight
planning task have revealed that multiresolution MSA∗ is
approximately four times faster (on average) than vector
neighborhood-based A∗ (Vector A∗) but returns paths of ap-
proximately the same cost (an average path cost ratio of 1.033).
Even with a uniform fine-resolution lattice, MSA∗ is still twice
as fast as Vector A∗ with an average path cost ratio of 0.99. It
has been shown that MSA∗ is suited to the online replanning
with an average computation time (4.46 s for multiresolution
MSA∗) that is a fraction of the minimum track traversal time
(2 min).

Future work primarily revolves around the implementation
and real-world testing of the proposed algorithm in a closed-
loop intelligent control system. Such an implementation in-
cludes the predictor and scheduling elements discussed in
Section VI-A and a study of the stability of the overall system.
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Additional avenues for the study include the use of heuristic
inflation (such as with anytime replanning A∗ [42]) and multi-
objective heuristics to further reduce the computation time.
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