
Saros: An Eclipse Plug-in for
Distributed Party Programming

Stephan Salinger
Institut für Informatik

Freie Universität Berlin
14195 Berlin, Germany

stephan.salinger@fu-
berlin.de

Christopher Oezbek
Institut für Informatik

Freie Universität Berlin
14195 Berlin, Germany

christopher.oezbek@fu-
berlin.de

Karl Beecher
Institut für Informatik

Freie Universität Berlin
14195 Berlin, Germany
karl.beecher@fu-

berlin.de

Julia Schenk
Institut für Informatik

Freie Universität Berlin
14195 Berlin, Germany

julia.schenk@fu-berlin.de

ABSTRACT
This paper describes the social practice of distributed party
programming as a natural extension of pair programming in
a distributed context with two or more software developers
working together. To this end we provide an overview of the
Eclipse plug-in Saros, a software implementation supporting
this practice, and explain its technical architecture. The
central contribution of this paper is a detailed description
of four concrete scenarios of distributed collaboration where
one of them is distributed party programming. Furthermore
it will be shown how each scenario is supported by Saros.
The paper closes with a discussion of preliminary findings
about establishing Saros in Open Source projects.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments
- Integrated environments; D.2.9 [Software Engineering]:
Management - Programming teams; K.4.3 [Computing Mi-
lieux]: Organizational Impacts - Computer-supported col-
laborative work

General Terms
Human Factors

Keywords
Eclipse, Collaboration, Awareness, Distributed Development,
Pair Programming, Distributed Pair Programming, Distri-
buted Party Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE 2010 ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-966-4/10/05 ...$10.00.

1. INTRODUCTION
Software developers who want to collaborate face several

problems when not co-located, for example awareness issues.
Saros is a plug-in for the integrated development environ-
ment (IDE) Eclipse1 which offers a solution to some of these
obstacles. It gives developers the ability to work simultane-
ously on their projects over a network by allowing concurrent
editing access to shared work artefacts. When editing doc-
uments, developers can immediately see the modifications
made by all other participants and Saros visualizes who is
responsible for each change.

The Saros software is the main result of ongoing research
into collaborative programming activities between distribu-
ted parties. Initially we examined the issues surrounding
distributed pair programming and began to develop a soft-
ware solution for this [12]. But our work has evolved to cover
the broader scope of distributed collaborative software de-
velopment and distributed pair programming is just possible
type of collaboration considered.

In developing a broader solution we have considered how
each party within a distributed collaboration needs to be
able to interact with every other party. One party becomes
aware of another through a variety of methods, but these
methods can be used differently depending on the purpose
of the work, so it is envisaged that Saros is useful in a number
of different collaborative scenarios.

This paper will discuss the Saros software, outline a num-
ber of scenarios in which it is judged to be useful, and pro-
vide information on its present state by discussing successes,
problems, and work currently underway. In section 3, the
Saros software is introduced from a technical perspective
by providing an overview of the architecture and explain-
ing how each module provides functionality. How it gen-
erates awareness between collaborating parties is stated in
section 4. After giving an impression of how the software
functions, the paper then, in section 5, discusses the pri-
mary development scenarios in which Saros is intended to
be most useful by outlining difficulties in some aspects of
distributed development and demonstrating how Saros ad-

1http://www.eclipse.org

http://www.eclipse.org

dresses them. Section 6 outlines the successes the project
has experienced so far and also the problems the project
members have come up against. The paper then discusses
ongoing work to provide new features and uses for the Saros
software in section 7. After this, some tools related to the
topic are briefly discussed in section 8, and some concluding
remarks follow in the final section.

2. RELATED WORK
Several ideas behind Saros are based on the practice of

pair programming (PP), popularised by the agile develop-
ment methodology eXtreme Programming (XP) [3]. In PP,
two developers are working together on the same artifact
(e.g. code or design), sitting side-by-side at one computer.
The developers work in two roles: One developer, the so-
called driver, “has control of the pencil/mouse/keyboard and
is writing the design or code. The other person continuously
and actively observes the work of the driver – watching for
defects, thinking of alternatives, looking up resources, and
considering strategic implications of the work at hand. The
roles of driver and observer are deliberately switched be-
tween the pair periodically” [45]. Although this role model
is commonly accepted, some studies have questioned the un-
derlying assumption that the driver is working on a medium
level of abstraction, while the observer is both working on a
higher and lower level. They rather find that the pair nor-
mally moves through different abstraction levels together [6,
8, 18].

Advocates of PP assume the following advantages: im-
proved knowledge transfer, more significant final outcomes
and enhanced team-building processes. Accordingly, a lot of
studies analysed PP regarding the resulting design or code
quality (in particular defect rate), speed, cost, knowledge
transfer and programmers satisfaction. The results of these
studies are often contradictory [37], but there is evidence
that in some settings PP improves code quality (e.g. [21,
31]) and leads to faster progress (e.g. [21, 31]), better diffu-
sion of knowledge and respectively better learning (e.g. [5]),
higher work satisfaction (e.g. [13, 31]) and greater confidence
regarding their own work (e.g. [31]). But it also seems that
PP can lead to higher programming costs and effort (e.g. [21,
31]). At the moment it is not well understood in which sit-
uations an investment in PP will pay off later in the devel-
opment process or which factors determine the success of
PP.

Variants of PP are distributive pair programming (DPP)
and side-by-side programming (SbS). In DPP the partners
are not co-located in front of a single computer as in PP.
They work together simultaneously on the same artifact
(usually code), but from different locations. “This means
that both must view a copy of the same screen [respectively
files], and at least one of them should have the capability
to change the contents” [1]. For this purpose the developers
need technological support. Cox and Greenberg [10] iden-
tified several important design principles for supporting the
collaboration of distributed teams via software: “(1) Pro-
vide a common, visually similar environment for all par-
ticipants; (2) Provide timely feedback of all actions within
the workspace; (3) Support gesturing and deictic references
(pointing gestures accompanied by verbal cues such as ‘here’
or ‘this one’); (4) Support workspace awareness (‘the up-to-
the-moment understanding of another person’s interaction
with the shared space’ [19]” [20].

There are only a few studies concerning the effects of us-
ing DPP (see Section 8 for a discussion on available tools).
Baheti et al. conducted an experiment with students who
were virtually paired using Microsoft NetMeeting. The re-
sults indicate that DPP is comparable with “co-located or
virtual teams (without pair programming) in productivity
and quality” [1]. Similar conclusions are drawn by two case
studies (DPP vs. traditional virtual teams) with students
done by Stotts et al. [42], using different COTS solutions
(e.g. Microsoft NetMeeting and pcAnywhere (Symantec)).
In an experiment conducted by Canfora et al. [7] students
used VNC “to share the desktop and Instant Messaging of
NetMeeting to support communication” (no audio channel).
Canfora et al. found that distributed pairs tended to stop
cooperating and began to work as two solo programmers. A
possible reason for this behaviour could be “that the lack of
an audio channel interfered with the pairs’ ability to effec-
tively collaborate” [20].

Side-by-side programming was first described by Cock-
burn [9] and can be explained in the following way: “Side-
by-side programming is like solo programming in that the
two programmers involved each use their own computer and
normally work alone on a (sub)task. However, side-by-side
programming resembles pair programming in that the pro-
grammers can switch to a pair mode at any moment: their
two computers are located very closely side-by-side to one
another. The idea is that they will be cooperating directly
for a while whenever this appears particularly useful” [32].
Nawrocki et al. [29] compared the productivity of SbS to solo
programming and PP. They found a 20% overhead compared
to solo programming, while pair programming had an over-
head of 50%. Dewan et al. [11] have done an exploratory,
qualitative study on distributed side-by-side programming
(DSbS), providing a classification of work modes: concurrent
uncoupled programming, concurrent coupled programming,
pair programming, concurrent programming/browsing and
concurrent browsing. Similar modes of collaboration, called
cooperation episode types, have been found by Prechelt et
al. [32]: exchange project details, exchange general knowl-
edge, discuss strategy, discuss step, debug work product,
integrate work products, and make remarks.

3. TECHNICAL ASPECTS
Saros is realised as a plug-in for the IDE Eclipse written in

Java and consists of 30,000 non-comment lines of code. Saros
uses a layer architecture with event passing and consists of
five major modules: (1) The network layer is responsible for
connecting users of Saros to each other and is based on the
Extensible Messaging and Presence Protocol (XMPP) [35].
(2) The concurrency control layer based on the Jupiter algo-
rithm [30] is in charge of synchronizing the activities of users
in a Saros session. (3) Saros connects to existing Eclipse
components using several classes in the bridge layer such
as for instance the text editor bridge which is responsible
for capturing local text editing events and replaying remote
ones. (4) To detect and repair synchronization issues caused
outside of Eclipse or by network failures, there is a consis-
tency watchdog component. (5) Lastly, the feedback module
gathers usage and process data from each Saros session and
direct users to a survey, if they have enabled this during
installation.

Individual modules in Saros are composed using the de-
pendency injection design pattern [16] via the PicoContainer

Smack XMPP

Network Layer

Concurrency
Control

Eclipse Bridge

Consistency
Watchdog

Eclipse

Feedback
Module

Figure 1: High-level architecture of Saros

framework2, which helps to keep the architecture transpar-
ent and modifiable. The resulting software architecture is
shown in Figure 1 and each component is discussed in more
detail below.

The network layer of Saros is responsible for establishing
bi-directional communication between the participants and
enable them to find each other. The layer was built on-
top of the Java Open Source XMPP-client library Smack3,
which enables developers to use existing XMPP accounts
and contact lists for instance from Jabber.org or Google
Mail. XMPP was chosen as an underlying middleware be-
cause of being an open standard. XMPP is also a client-
server communication protocol which is well suited for users
to find and connect to each other. However, Saros also
needs preferably low-latency communication during a ses-
sion and high-bandwidth communication while synchroniz-
ing the project between participants. To this end, Saros
uses the XMPP Extension Protocol Jingle [36] to estab-
lish a peer-to-peer connection between session participants
and transfer large binary objects outside the XMPP band.
Jingle includes provisions for Network Address Translation
(NAT) traversal using Session Traversal Utilities for NAT
(STUN) [34] to achieve P2P connections when both users are
behind firewalls or routers. If NAT traversal fails, SOCKS5
proxy servers can be used to relay communication.

The concurrency layer of Saros uses the Jupiter algorithm
for maintaining eventual consistency between concurrent
editing operations. The algorithm is based on the GOTO
inclusion transformation (cf. [44]) to allow each participant
to write in real-time on his or her local document while re-
mote modifications of other participants are merged into the
document concurrently. Jupiter is an algorithm with a cen-
tralised server component operated by the host of a Saros
session and local client components for each session partic-
ipant. The initial implementation of Jupiter used in Saros
was taken from the editor ACE [4] and subsequently tested,
corrected and expanded for the use in Eclipse [47] and to
support concurrent undo following the algorithm from [43].

Connecting to Eclipse using the bridge component needs

2http://www.picocontainer.org/
3http://www.igniterealtime.org/projects/smack/

to be achieved on several levels. First and foremost, it is
necessary to capture editing events from the text editors in
Eclipse and to be able to replay these—possibly adjusted by
the Jupiter algorithm multiple times—on a remote client.
This also includes being notified, when users want to undo
their own changes. Second, saving files and closing editors
without saving need to be captured, as these changes reset
internal representations of the editors. Third, interactions
with editors and viewports such as scrolling, selecting text
or opening new files must be detected and executed. Fourth,
the file system—called workspace in Eclipse—must be mon-
itored for files and folders being modified by other means
than editors such as by build-scripts, file-operations or other
applications.

Most of these operations could be captured and replayed
by studying the standard text editors available in Eclipse
and replicating their behavior. Unfortunately it has been
found that complications arise when one considers saving
and reverting in the distributed context and when trying to
prevent users in the role of observers from modifying files
and their content. For instance, we found that no mecha-
nism exists in Eclipse to reliably prevent a file from being
saved by an observer, which implied that files cannot be kept
consistent at the disk level using Saros. Rather, only when
a driver saves we can replicate the saving to disk.

This leads to the fourth important component in Saros—
the consistency watchdog—which is responsible for check-
ing the consistency of files in cases when the Jupiter algo-
rithm cannot help us, such as files being changed externally
to Eclipse and thus outside the mechanisms by which we
can capture them as incremental changes. The consistency
watchdog to this end will regularly calculate check-sums of
open files on the host side and verify files on the client side.
The consistency watchdog is integrated with Jupiter to dis-
card check-sums, which are outdated because of concurrent
editing activities. It is described in more detail in [23].

Finally, Saros includes a feedback module for scientific
data gathering, asking users to take surveys at the end of
session. Following sound ethical conduct for Internet re-
search based on activity data [17], the data gathering is
strictly opt-in and anonymous, and can be disabled at any
time by the user. We maintain a web-site which lists all the
information we currently collect4 such as length of session,
number of participants, role-changes or characters written
concurrently.

4. AWARENESS
Saros is designed to manage and map ways to collabora-

tion in a distributed environment which are normally per-
formed co-locately. This implies that most of the benefits of
human face-to-face interaction need to be compensated by
Saros. For instance, being co-located with others in front
of a computer, one can easily see whether the other person
is paying attention, how she is feeling or what she is do-
ing through body-language, facial expressions and gestures.
The term awareness is used to denote the understanding
one person has about the shared environment and activities
of others [14]. Awareness support in the context of software
means how an application is able to convey such information
about a collaboration partner who is not co-located.

In the case of DPP, several awareness aspects are relevant

4https://www.inf.fu-berlin.de/w/SE/DPPFeedback

http://www.picocontainer.org/
http://www.igniterealtime.org/projects/smack/
https://www.inf.fu-berlin.de/w/SE/DPPFeedback

to maintain the benefits and work quality improvements of
co-located collaboration in a distributed environment. In
most cases this information can be gathered from the con-
text information, which then has to be used or visualised
to improve the usability and usage value for the distributed
team members in a collaboration session.

First, presence awareness is necessary to establish context
information about who is present and available in a virtual
team. Second, workspace awareness refers to the informa-
tion a user has about work artefacts currently viewed, used
or being worked on by others. Third, task awareness can be
used as a term orthogonal to workspace awareness asking
for the goal and its immediate steps currently pursued by a
user.

Saros uses the following features to create awareness of
participants, which are highlighted in Figure 2: (1) The cur-
sor and text selection of each user is shown in his or her color.
Users can point out and highlight code sections to each other
by using this feature. (2) The last twenty text edits written
by a driver are highlighted in each editor. Just as a “mouse
trail” can be used to raise the awareness of a fast moving
mouse cursor [2], the additional colored trail makes it easier
to track the contributions of individual authors. (3) The rel-
ative position of a user within each file is shown as a colored
bar inside the scroll-bar. Users can click on this viewport
annotation to jump to the screen that is visible by the re-
spective user. (4) Files opened or currently viewed by a user
are highlighted in the package explorer using several small
dots. Hereby it becomes easier for a user to identify the sec-
tions in a project which are currently being viewed or edited
and could potentially be used to show only a partial view of
interest of the project as in Eclipse Mylyn [26]. (5) Combin-
ing the awareness information inside each file and between
files, Saros offers to keep the local viewport automatically
in sync with a chosen user. This enables a “follow-mode”
in which the local user can concentrate on the viewport as
seen by the user being followed, thus staying close to the
observer role in the pair programming paradigm. Unlike co-
located PP in DPP, it is possible to stop following at any
time and peruse code independent of the partner. (6) Saros
accentuates whether a user is currently using Eclipse or has
another application such as web browser active. This is nec-
essary since users have frequently expressed that while they
see that another user has the same viewport in Eclipse they
are unsure whether the other user is seeing this viewport or
is currently doing something else.

Similar to [7] and [20] we found that an audio channel
is essential to compensate for the lost face-to-face interac-
tion and is superior to text-based chat. As Saros does not
include Voice over IP (VoIP) capabilities, a separate appli-
cation such as Skype or Mumble must be run in parallel.

5. SCENARIOS
Software development includes several forms of collabo-

ration. In companies which interact globally or in Open
Source projects it is often not a given condition that the
team members are co-located. The goal of Saros is to re-
alise collaboration which normally takes place face-to-face
in distributed environments. This section will illustrate four
usage scenarios of distributed collaboration to give an im-
pression of the concrete possibilities of using Saros. For all
scenarios we thus assume the following: (1) Handsfree au-
dio communication is readily available for the participants

6

2

1

3

4

5

Figure 2: Various awareness features used in Saros
such as (1) selection, (2) text edits, and (3) view-
ports highlighted in each users’ color, (4) opened
and active files by current drivers, (5) button for ac-
tivating the follow-mode, and (6) information about
Eclipse being the foreground window.

either via a normal telephone or VoIP. (2) Each session can
be confined to some parts of a software project such as a par-
ticular module or layer. This might be interesting to speed
up initial synchronization or for information hiding reasons,
and is supported by the partial sharing feature in Saros and
thus not further discussed below.

The scenarios resulted from studying the literature
(e.g. [9]) as well as observing sessions in real work contexts.

5.1 Code Walk-through
A first possible use case of distributed collaboration is the

introduction of a new member in a software development
team. To familiarise the new developer with the source code,
it is often necessary to show and explain certain code parts.
Most likely an experienced developer will act as teacher and
navigate through the code and highlight important code sec-
tions. The student will try to follow the mentor’s thoughts
and ask questions to gain a better understanding of what
the teacher is talking about.

In a distributed environment or if the teacher is not co-
located, it would be nice to have a tool which supports the
roles of the leader and one or more students from each per-
son’s remote computer. Saros can realise this scenario in
which one or more students can see the currently opened
file and viewport in this file and the selections of another
person.

To follow the teacher moving around in the source code,
Saros provides the follow-mode in which students can track
their teacher.

At this point, a simple screen sharing application would
equally be able to provide this scenario, but Saros offers the
following advantages: (1) At the end of Saros a session, each
participant will have an identical copy of the shared project
and could continue learning or start working with it. With
a screen sharing application, only the host of a session has

a copy locally. (2) Each student has the possibility to use
his or her individual cursor to highlight interesting parts in
the code to facilitate gesturing. A screen sharing application
only provides a shared cursor and thus only one selection.
(3) As will be shown in the next scenario, the student also
has the possibility to leave the follow-mode and investigate
code independently.

5.2 Code Review
A second scenario in software development is perform-

ing a code review, which is particularly common in Open
Source development for assuring quality [41]. Here one
or more experienced developers will look at one particular
method, class, or module searching for defects and architec-
tural weaknesses. In contrast to the previous scenario, which
is essentially a unidirectional transfer of knowledge in the
code review case, all developers are expected to contribute
and find problems. Each will bring their own experience
with the particular code and their own need for clarifying
existing assumptions about the code into the session.

Assuming again that people want to conduct a code re-
view which is not co-located, Saros can support this scenario
by default. The main extension to the previous scenario is
the desire to have both periods of shared investigation and
independent analysis. Saros is ideally suited for this, since
each developer has the opportunity to leave the follow mode,
go their own way and resume following any of the other de-
velopers later on.

5.3 Distributed Pair Programming
Distributed pair programming comes into play when de-

velopers want to do pair programming but are not co-
located. Then they need a tool which maps the roles of
driver and observer and their tasks and responsibilities by
allowing real-time editing, common code view and control-
ling the availability of mouse and keyboard (so-called floor
control).

Saros maps the roles driver and observer and their corre-
sponding tasks closer to reality. Two distributed developers
can pair together in a programming session. To this end, one
of them—the host—invites the other and naturally assumes
the role of the driver. He or she has control over mouse
and keyboard. The other developer is assigned to be the
observer initially. Role changes can then be performed by
the host to support the frequent changes in role assignment
suggested by XP [3].

5.4 Distributed Party Programming
In contrast to the previous scenario, the collaboration in

the case of SbS is much more loosely coupled. Developers
ask for each other’s help frequently but only if needed and
for limited periods of time. In this scenario it is easy to
see the downside of co-located SbS because only a limited
number of co-developers can sit in close proximity.

Saros provides a solution to this problem, which we call
distributed party programming. All members of a distri-
buted team have the possibility to form a virtual team by
adding each other to their project roster which is equivalent
to a buddy list in an instant messaging application. Thus
everybody can work independently in his or her project but
by using the project roster he or she is aware of the presence
of all other members in the virtual team. When one team
member wants to ask one or more team members for help,

a Saros session can be started. Then the asking person can
navigate through the project’s directory tree and highlight
certain parts which are relevant for explaining the problem
and its context while the other participants of the session are
in follow-mode. Once a solution is found, team members can
‘leave the room’ and switch back to working independently.

6. PRESENT STATE AND PROBLEMS
This section will outline the present state of success the

Saros project has achieved and will also discuss relevant
problems to overcome.

In terms of the classification system for Open Source
projects offered by English and Schweik, Saros can be con-
sidered a “success in the growth stage” [15]. The project
has been under active development for more than one year,
consistently creating a functioning release once every month.
According to SourceForge.net statistics, the project has been
downloaded at a growing rate, averaging approximately 5000
downloads per month in the period August – December
2009.

Furthermore, thanks to our user feedback and survey sys-
tems, we can argue that Saros has been actively utilized and
found useful by a number of people. Our on-line survey sys-
tem asks users to voluntarily fill out a short questionnaire
regarding their experience of using the software. One ques-
tion is multi-choiced – “How did your latest Saros session
work out?” – to which the responses are:

• Everything went great.

• Everything went as expected.

• There were some minor problems, but we were able to
complete our task(s).

• There were some major problems that prevented us
from completing our task(s).

• Other

Our survey system, as well as being a useful form of feed-
back, has recorded 29 completed surveys so far, 22 of which
reported either “Everything went great” or only minor prob-
lems.

In addition to this involvement with essentially anony-
mous users, we have been attempting to integrate Saros
into specific existing software projects in a systematic and
measured way. In the ongoing process of trying to intro-
duce Saros into Open Source projects, we have so far ex-
perienced some difficulties. After selecting an Open Source
project, we typically contact the administrator(s), inform-
ing them of Saros and the possibilities that should arise from
using the software as part of their development work. De-
spite many very positive reactions, some reservations have
been expressed by those we contacted. The reasons for these
reservations can mostly be attributed to either being doubt-
ful of PP, perhaps because of unfavourable past experience,
or being doubtful that DPP is actually a useful pursuit.

As an ongoing concern we are seeking ways to overcome
such doubts and reservations on the part of potential users.
As stated above, there sometimes exists bias against PP,
but, as has already been shown in section 5, Saros is useful
for a number of different modes of collaboration which differ
from PP. As a consequence we have decided to emphasise the
different scenarios, show PP simply as one of many possible
scenarios and point out the other possible usage scenarios
of Saros to the contacted projects. When possible we now

try to identify typical work flows or events in the respective
projects and to point out how Saros may be used in those
contexts. When we identify such a project specific context,
we argue the benefits of using Saros in this context and also
offer our assistance establishing Saros.

7. ONGOING WORK
Saros continues to be developed by a team of researchers

and students at the Freie Universität Berlin. This work in-
cludes on-going maintenance and the addition of new fea-
tures. At present a number of these features under develop-
ment are particularly noteworthy because of their potential
for improving the collaborative abilities of Saros.

7.1 Saros as a Research Platform
Since Saros is primarily useful in the context of distribu-

ted work, it becomes an interesting question how to conduct
research on DPP in general and the use of Saros specifically.
In contrast to a laboratory experiment, it is much more dif-
ficult to observe users of Saros and gather their feedback.
To alleviate this problem, a feedback module is included in
Saros, which can gather usage data and redirect users to a
survey after the end of session. In particular, the survey (de-
scribed in Section 7) has offered us several insights about the
needs of our users that would have been hard to discover oth-
erwise. For instance, various users have asked us to support
the sharing of several projects in Eclipse simultaneously, be-
cause their build environment using Apache Maven5 splits
a conceptual project into many Eclipse projects along mod-
ule boundaries. The data gathering component is similar to
Hackystat [25] or ElectroCodeoGram [38] and captures “ac-
tual process” data in medium granularity, such as number
of concurrent editing events, role changes between observer
and driver, etc. We have only begun to explore the potential
of this data for increasing our understanding of DPP.

7.2 Screen Sharing
In general, screen sharing allows users to transmit either a

portion or the entirety of their screen image for other remote
users to see. Saros will provide screen sharing functional-
ity, thus enabling users to share with their collaborators a
real-time image of what is displayed on their screen in a
convenient way.

This feature is designed so that session participants can
control a “virtual camera” on their desktop with the mouse
pointer. The portion of the screen captured within the view
is sent via a real-time stream for all other collaborators to
see.

7.3 VoIP
As has already been explained, Saros makes use of the

XMPP Smack library to enable Saros clients to communi-
cate. Jingle, the aforementioned extension to XMPP, pro-
vides multimedia interactions for clients, and current work
by the Saros project includes using Jingle to implement VoIP
functionality. This will integrate into Saros the ability to
provide collaborating developers with spoken communica-
tion, which is essential for raising awareness and provid-
ing fast interactive communication. This functionality will
capitalise on previous work done in CSCW6 research that

5http://maven.apache.org
6Computer Supported Cooperative Work

demonstrates the importance of verbal communication in
on-line collaboration (e.g. [24]), and will also address re-
quests for this feature from the user feedback received by
Saros.

7.4 Plug-in Compatibility
Saros reuses and extends existing Eclipse components

whenever possible to leverage the development effort already
spent by third parties. As, however, Saros is not alone in
this respect and can be expected to be used alongside any
number of other plug-ins, Saros and other plug-ins must
function acceptably with one another. We focus a system-
atic testing effort towards verifying that a highly relevant
subset of plug-ins reach a level of acceptability.

At present we are testing programming language plug-
ins. So far we have tested the functioning of plug-ins for
Java, C/C++, PHP, Rails, Jaxer, Python, Adobe Air and
TypoScript.7

We will continue to submit these plug-ins to testing as en-
vironmental factors change over time, and will include fur-
ther plug-ins in our testing approach, notably built tools
such as Apache Maven and plug-ins for version control such
as Subclipse8. Plug-ins that are found to function erro-
neously with Saros will be investigated and we will try to
adapt Saros (if required) to support them also.

8. RELATED TOOLS
Over the last decade several tools supporting DPP has

been developed all with their relative strengths and weak-
nesses [46]. At the highest level there are two kinds collabo-
ration tools. On the one hand there are screen sharing and
remote desktop applications such as VNC or Microsoft Net-
meeting. These applications replicate the desktop of a user
and permit remote users to collaborate by taking control of
mouse and keyboard [20]. On the other hand are collabora-
tion awareness tools which extend an application in specific
areas only to create a shared collaboration space. Collab-
oration awareness tools can then be further sub-classified
into collaborative editors such as SubEthaEdit or A Col-
laborative Editor (ACE) [4] (which are designed for editing
arbitrary texts), and specialised editors (which focus on a
particular application domain such as software development,
and are often in integrated existing applications). The lat-
ter camp consists primarily of research prototypes and no-
tably include COPPER [27], TUKAN [39], Moomba [33],
Sangam [22, 28], and XPairtise [40]. Unfortunately none
of these tools are publicly available, with the exception of
XPairtise, whose last release was in 2008. A recent develop-
ment is the increased availability of collaborative editors as
web-applications such as Mozilla Bespin9 for web-design in
HTML, CSS and JavaScript and Google Docs10 for collab-
orative editing of spreadsheets and text documents.

9. CONCLUSION
In this paper we have introduced Saros, an Eclipse plug-

in for simultaneous collaborative software development. We
have highlighted that Saros is more than a tool for DPP,

7A complete list of compatible plug-ins is available at https:
//www.inf.fu-berlin.de/w/SE/DPPCompatiblePlugins.
8http://subclipse.tigris.org/
9http://bespin.mozilla.com/

10http://docs.google.com

http://maven.apache.org
https://www.inf.fu-berlin.de/w/SE/DPPCompatiblePlugins
https://www.inf.fu-berlin.de/w/SE/DPPCompatiblePlugins
http://subclipse.tigris.org/
http://bespin.mozilla.com/
http://docs.google.com

because there exist many different scenarios for the use of
Saros, such as for reviews or knowledge transfer (see section
5). The descriptions of the awareness features (see section 4)
and the technical implementation (see section 3) show that
Saros addresses the design principles for supporting collabo-
ration identified by Cox and Greenberg [10] and should help
to overcome some of the hurdles of developers being distri-
buted. For example, Saros facilitates gesturing and deictic
references via highlighting functionality and timely feedback
of actions via the use of the Jupiter algorithm. Nevertheless,
more empirical evaluation is needed to get detailed informa-
tion about the usefulness of the awareness functionalities
and to develop ideas for the improvement of Saros. Con-
cerning this matter we have described the feedback module
as one way to gather scientific data for future work. With
the aid of this module Saros also provides a platform for sci-
entific studies of the social practices associated with distri-
buted software development, namely distributed pair, side-
by-side and party programming. Finally, we have described
our ongoing efforts to improve Saros and make it available
in corporate and Open Source settings.

Acknowledgments.
Many thanks are extended to R. Djemili, B. Gustavs,

O. Rieger, C. Jacob, M. Rintsch, S. Ziller, E. Rosen,
L. Dohrmann, S. Szücs, T. Sóti, W. Polcwiartek, E. Stark-
mann, R. Kunze, S. Lau, H. Staib, O. Loga, and A. Kiwitt
who have worked on Saros and the many Saros users who
have given us feedback.

10. REFERENCES
[1] P. Baheti, E. Gehringer, and D. Stotts. Exploring the

efficacy of distributed pair programming. In Extreme
Programming and Agile Methods – XP/Agile Universe
2002, volume 2418 of Lecture Notes in Computer
Science, pages 387–410. Springer, 2002.

[2] P. Baudisch, E. Cutrell, and G. Robertson.
High-density cursor: a visualization technique that
helps users keep track of fast-moving mouse cursors.
In INTERACT’03; IFIP TC13 International
Conference on Human-Computer Interaction, 1st-5th
September 2003, Zurich, Switzerland, 2003.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 1999.

[4] M. Bigler, S. Räss, and L. Zbinden. ACE—a
collaborative editor. Project Report.
http://swiki-lifia.info.unlp.edu.ar/

ContextAware/uploads/25/ACE_-_A_Collaborative_

Editor_-_Report_Evaluation_Algorithms.pdf. Last
visited 2009-12-18, Apr. 2005.

[5] T. Bipp, A. Lepper, and D. Schmedding. Pair
programming in software development teams - an
empirical study of its benefits. Information and
Software Technology, 50(3):231–240, 2008.

[6] S. Bryant, P. Romero, and B. du Boulay. Pair
programming and the mysterious role of the navigator.
International Journal of Human-Computer Studies,
2008.

[7] G. Canfora, A. Cimitile, and C. A. Visaggio. Lessons
learned about distributed pair programming: what are
the knowledge needs to address? In Twelfth
International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, pages
314–319, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[8] J. Chong and T. Hurlbutt. The social dynamics of
pair programming. In ICSE07: Proceedings of the 29th
Int’l Conf. on Software Engineering, pages 354–363,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] A. Cockburn. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison Wesley, 2004.

[10] D. Cox and S. Greenberg. Supporting collaborative
interpretation in distributed groupware. In CSCW ’00:
Proceedings of the 2000 ACM conference on Computer
supported cooperative work, pages 289–298, New York,
NY, USA, 2000. ACM.

[11] P. Dewan, P. Agarwal, G. Shroff, and R. Hegde.
Distributed side-by-side programming. In CHASE ’08:
Proceedings of the 2008 international workshop on
Cooperative and human aspects of software
engineering, pages 48–55, Los Alamitos, CA, USA,
2009. IEEE Computer Society.

[12] R. Djemili, C. Oezbek, and S. Salinger. Saros: Eine
Eclipse-Erweiterung zur verteilten
Paarprogrammierung. In Software Engineering 2007 -
Beiträge zu den Workshops, Hamburg, Germany, Mar.
2007. Gesellschaft für Informatik.

[13] M. A. Domino, R. W. Collins, and A. R. Hevner.
Controlled experimentation on adaptations of pair
programming. Information Technology and
Management, 8(4):297–312, 2007.

[14] P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In CSCW ’92:
Proceedings of the 1992 ACM conference on
Computer-supported cooperative work, pages 107–114,
New York, NY, USA, 1992. ACM.

[15] R. English and C. M. Schweik. Identifying success and
abandonment of Free/Libre and Open Source
(FLOSS) commons: A classification of Sourceforge.net
projects. UPGRADE, VIII(6):54–59, Dec. 2007.

[16] M. Fowler. Inversion of control containers and the
dependency injection pattern. http:
//www.martinfowler.com/articles/injection.html,
Jan. 2004.

[17] M. S. Frankel and S. Siang. Ethical and legal aspects
of human subjects research on the internet. Published
by AAAS online , June 1999.

[18] S. Freudenberg (née Bryant), P. Romero, and
B. du Boulay. ”Talking the talk”: Is intermediate-level
conversation the key to the pair programming success
story? In AGILE 2007, pages 84–91, Washington, DC,
USA, 2007. IEEE Computer Society.

[19] C. Gutwin and S. Greenberg. The effects of workspace
awareness support on the usability of real-time
distributed groupware. ACM Trans. Comput.-Hum.
Interact., 6(3):243–281, 1999.

[20] B. Hanks. Empirical evaluation of distributed pair
programming. International Journal of
Human-Computer Studies, 66(7):530–544, 2008.
Collaborative and social aspects of software
development.

[21] J. E. Hannay, T. Dyb̊a, E. Arisholm, and D. I.
Sjøberg. The effectiveness of pair programming: A
meta-analysis. Information and Software Technology,

http://swiki-lifia.info.unlp.edu.ar/ContextAware/uploads/25/ACE_-_A_Collaborative_Editor_-_Report_Evaluation_Algorithms.pdf
http://swiki-lifia.info.unlp.edu.ar/ContextAware/uploads/25/ACE_-_A_Collaborative_Editor_-_Report_Evaluation_Algorithms.pdf
http://swiki-lifia.info.unlp.edu.ar/ContextAware/uploads/25/ACE_-_A_Collaborative_Editor_-_Report_Evaluation_Algorithms.pdf
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www.aaas.org/spp/sfrl/projects/intres/main.htm

51(7):1110–1122, 2009.

[22] C.-W. Ho, S. Raha, E. Gehringer, and L. Williams.
Sangam: a distributed pair programming plug-in for
Eclipse. In eclipse ’04: Proceedings of the 2004
OOPSLA workshop on eclipse technology eXchange,
pages 73–77, New York, NY, USA, 2004. ACM.

[23] C. Jacob. Weiterentwicklung eines Werkzeuges zur
verteilten, kollaborativen Softwareentwicklung.
Diplomarbeit, Institut für Informatik, Freie
Universität Berlin, Berlin, Apr. 2009.

[24] C. Jensen, S. D. Farnham, S. M. Drucker, and
P. Kollock. The effect of communication modality on
cooperation in online environments. In Proceedings of
the SIGCHI conference on human factors in
computing systems, volume 2, pages 470–477, 2000.

[25] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang,
A. Kagawa, and T. Yamashita. Practical automated
process and product metric collection and analysis in
a classroom setting: Lessons learned from hackystat.
In ISESE ’04: Proceedings of the 2004 International
Symposium on Empirical Software Engineering, pages
136–144, Washington, DC, USA, 2004. IEEE
Computer Society.

[26] M. Kersten and G. C. Murphy. Mylar: a
degree-of-interest model for IDEs. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 159–168,
New York, NY, USA, 2005. ACM.

[27] H. Natsu, J. Favela, A. L. Morán, D. Decouchant, and
A. M. Martinez-Enriquez. Distributed pair
programming on the web. In Fourth Mexican
International Conference on Computer Science
(ENC’03), pages 81–88, Los Alamitos, CA, USA,
2003. IEEE Computer Society.

[28] K. Navoraphan, E. F. Gehringer, J. Culp,
K. Gyllstrom, and D. Stotts. Next-generation dpp
with sangam and facetop. In eclipse ’06: Proceedings
of the 2006 OOPSLA workshop on eclipse technology
eXchange, pages 6–10, New York, NY, USA, 2006.
ACM.

[29] J. R. Nawrocki, M. Jasiñski, L. Olek, and B. Lange.
Pair programming vs. side-by-side programming. In
Software Process Improvement, volume 3792 of Lecture
Notes in Computer Science, pages 28–38. Springer,
2005.

[30] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In UIST ’95: Proceedings of the
8th annual ACM symposium on User interface and
software technology, pages 111–120, New York, NY,
USA, 1995. ACM.

[31] J. T. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105–108, 1998.

[32] L. Prechelt, U. Stärk, and S. Salinger. Types of
cooperation episodes in Side-by-Side programming. In
Proc. 21st Annual Workshop of the Psychology of
Programming Interest Group (PPIG ’09), Limerick,
July 2009. ppig.org.

[33] M. Reeves and J. Zhu. Moomba – A collaborative
environment for supporting distributed Extreme
Programming in global software development. In
Extreme Programming and Agile Processes in Software

Engineering, volume 3092/2004 of Lecture Notes in
Computer Science, pages 38–50. Springer, Berlin /
Heidelberg, May 2004.

[34] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing.
Session traversal utilities for NAT (STUN). Request
for Comments 5389, Internet Engineering Task Force,
Oct., 2008.

[35] P. Saint-Andre. Extensible messaging and presence
protocol (XMPP): Core. Request for Comments 3920,
Internet Engineering Task Force, Oct., 2004.

[36] P. Saint-Andre. Jingle: Jabber does multimedia. IEEE
MultiMedia, 14(1):90–94, Jan. 2007.

[37] S. Salinger, L. Plonka, and L. Prechelt. A coding
scheme development methodology using grounded
theory for qualitative analysis of pair programming.
Human Technology: An Interdisciplinary Journal on
Humans in ICT Environments, 4:9–25, 2008.

[38] F. Schlesinger and S. Jekutsch. ElectroCodeoGram:
An environment for studying programming. In
Workshop on Ethnographies of Code, Infolab21,
Lancaster University, UK, 30-31 March 2006.

[39] T. Schümmer and J. Schümmer. Support for
distributed teams in eXtreme Programming. In
Extreme programming examined, pages 355–377.
Addison-Wesley, Boston, MA, USA, 2001.

[40] T. Schümmer and S. Lukosch. Supporting the social
practices of distributed pair programming. In
Groupware: Design, Implementation, and Use, volume
5411 of Lecture Notes in Computer Science, pages
83–98. Springer, 2008.

[41] J. Stark. Peer reviews as a quality management
technique in Open-Source software development
projects. In ECSQ ’02: Proceedings of the 7th
International Conference on Software Quality, pages
340–350, London, UK, 2002. Springer-Verlag.

[42] D. Stotts, L. Williams, N. Nagappan, P. Baheti,
D. Jen, and A. Jackson. Virtual teaming: Experiments
and experiences with Distributed Pair Programming.
In Extreme Programming and Agile Methods —
XP/Agile Universe 2003, volume 2753/2003 of Lecture
Notes in Computer Science, pages 129–141. Springer,
Berlin / Heidelberg, Sept. 2003.

[43] C. Sun. Undo as concurrent inverse in group editors.
ACM Trans. Comput.-Hum. Interact., 9(4):309–361,
Dec. 2002.

[44] C. Sun and C. Ellis. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In CSCW ’98: Proceedings of the 1998
ACM conference on Computer supported cooperative
work, pages 59–68, New York, NY, USA, 1998. ACM.

[45] L. Williams, R. R. Kessler, W. Cunningham, and
R. Jeffries. Strengthening the case for pair
programming. IEEE Software, 17(4):19–25, 2000.

[46] D. Winkler and S. Biffl. Evaluierung von Werkzeugen
für Distributed Pair Programming: Eine Fallstudie. In
In Proceedings of the 2009 Conference on Software &
Systems Engineering Essentials, Berlin, Germany,
May 2009.

[47] S. Ziller. Behandlung von Nebenläufigkeitsaspekten in
einem Werkzeug zur Verteilten Paarprogrammierung.
Diplomarbeit, Institut für Informatik, Freie
Universität Berlin, Berlin, Oct. 2009.

	Introduction
	Related Work
	Technical Aspects
	Awareness
	Scenarios
	Code Walk-through
	Code Review
	Distributed Pair Programming
	Distributed Party Programming

	Present State and Problems
	Ongoing Work
	Saros as a Research Platform
	Screen Sharing
	VoIP
	Plug-in Compatibility

	Related Tools
	Conclusion
	References

