

Password:	GO	0
User name:		

Register Forgotten Password Athens/Institution Login

Synergy Home | Browse | Search | My Synergy | Books Online | Resources | About | Help

Fatigue & Fracture of Engineering Materials & Structures

Journal Menu

Table of Contents List of Issues

Tools

Email this article Add to favorite articles Export this citation Alert me when this article is cited: Email | RSS (What is this?)

View ISI citation

Publication history

Published article online: 13 Oct 2006 **Issue online:** 16 Nov 2006

Received in final form 13 May 2005

Fatigue & Fracture of **Engineering Materials and Structures**

Volume 29 Issue 12 Page 1031-1038, December 2006

To cite this article: ENRIQUE CASTILLO, ALFONSO FERNÁNDEZ-CANTELI (2006)

A Parametric Lifetime Model for the Prediction of High-Cycle Fatigue Based on Stress Level and Amplitude

Fatigue & Fracture of Engineering Materials and Structures 29 (12), 1031-1038.

doi:10.1111/j.1460-2695.2006.01068.x

Prev Article Next Article

Abstract

A Parametric Lifetime Model for the Prediction of **High-Cycle Fatigue Based on Stress Level and Amplitude**

ENRIQUE CASTILLO¹ and ALFONSO FERNÁNDEZ-CANTELI²

¹Department of Applied Mathematics and Computational Sciences, University of Cantabria and University of Castilla-La Mancha, Spain ²Department of Construction and Manufacturing Engineering, University of Oviedo, Spain

Correspondence: E. Castillo. E-mail: castie@unican.es

ABSTRACT

The goal of this paper is to present a general parametric lifetime model for predicting fatigue behaviour at any stress level and amplitude (for example, at any combination of σ_{max} and σ_{min} pair) in the high-cycle fatigue regime. The problem of the design of the experimental laboratory test required for such a prediction is dealt with. The surprising and relevant result is that running two groups of tests for two different constant stress levels of σ_{max} or σ_{min} is sufficient to predict the whole collection of Wöhler fields for any possible stress level. However, some combinations of tests, such as one for a fixed value of $\sigma_{\mbox{\scriptsize max}}$ and one for a fixed value of $\sigma_{\mbox{\scriptsize min}},$ are shown to be insufficient. Closed formulas for obtaining any Wöhler field from the results of the

experiments corresponding to the two different fixed values of σ_{max} or σ_{min} are given. Together the proposed model and lab tests allow any fatigue analysis to be performed in the current investigation. One example of application illustrates the proposed method.

	References	0	Full Text HTML	0	Full Text PDF (264 KB)	0
This Article						
Abstract References Full Text HTML Full Text PDF (264 KB) Rights & Permissions						
Search						
In						
SynergyCrossRef						
By keywords						
interpolation and extrapolation of fatigue results						
stress level						
Weibull model						
Wöhler field						
By author						
☐ ENRIQUE CASTILLO						
☐ ALFONSO FERNÁNDEZ-						
CANTELI						
GO O						

Privacy Statement | Terms & Conditions | Contact | Help

| Blackwell Blackwell Synergy® is a Blackwell Publishing, Inc. registered trademark Technology Partner — Atypon Systems, Partner of CrossRef, COUNTER, AGORA, HINARI and OARE Inc.