

Data Preprocessing

Need to Preprocess Data

Data quality is a key issue with data mining

- To increase the accuracy of the mining, has to perform data preprocessing.
 - » Otherwise, garbage in => garbage out

 80% of mining efforts often spend their time on data quality

How to Preprocess Data?

- Data Cleaning
- Data Integration
- Data Normalization
- Data Reduction

Why Data Cleaning?

- Real-world data are:
 - » Incomplete:
 - missing values, missing attributes, or containing only aggregate data
 - » Noisy:
 - containing errors or outliers
 - » Inconsistent:
 - containing discrepancies in codes or names
- Solution: Data Cleaning

Why Data Integration?

- Data comes from different Sources with
 - » Same concept but different attribute name:
 - (Example: ssn; social_security; student_ssn)
 - » Same value expressed differently:
 - (Example: undergraduate ; UG...)
 - » Repeated tuples in different source databases.
- => Causes inconsistencies and redundancies.
- Solution: Data Integration (schema re-consolidation)

Why Data Reduction?

- Huge amount of data
 - » decreases the efficiency
 - » Make analysis difficult
- Solution: Data Reduction (reducing huge dataset to smaller representation that can show the same analysis)

Why Data Normalization?

• The range of attributes (features) values differ, thus one feature might overpower the other one.

• Solution: Normalization (Scaling data values in a range such as [0..1], [-1..1] prevents outweighing features with large range like 'salary' over features with smaller range like 'age'.

Data Cleaning: Handling Missing Values

- Use attribute mean.
- Use attribute mean for all samples belonging to same class.
- Use most probable value based on existing data (via Decision Tree, Bayesian,...).
 - ex.: What would probably be the salary of a person with age *x* and education *y* based on the other data we currently have?
- As these are all estimates, they can lead to invalid results!

Data Cleaning: Detect Noisy Data

- Histogram data distribution analysis
- Cluster Analysis- by detecting data that are outside any cluster.
- **Regression** by using regression function.

Data Cleaning: Smoothing Noisy Data

- Binning- by arranging the data into buckets.
- Concept Hierarchy
 - » Example: presenting numeric values such as age as young, middle age, and old.
- Ignoring outliers detected by

(Outliers are data that are outside of the range of or inconsistent with the remaining data)

- Histogram
- Clustering
- Regression

Binning (Example)

- Step 1: Partition sorted values into equal size bins.
- Step 2: Smooth by bin means/medians/boundaries.
- => reduces distinct values and gets rid of outliers:
 - » 4,8,15,21,21,24,25,28,34

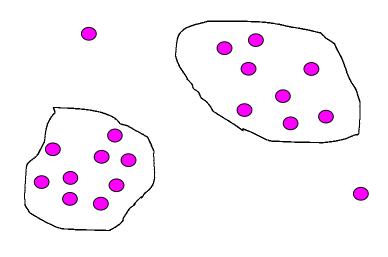
Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

» By bin mean:

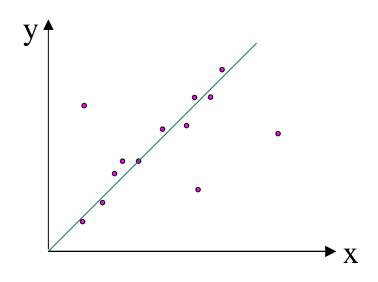
Bin1: 9, 9, 9; bin 2: 22, 22, 22; bin 3: 29, 29, 29


Smoothing by bin boundary

Bin 1: 4, 4, 15; bin 2: 21, 21, 24; bin 3: 25, 25, 34

Clustering

• Find clusters and look for elements outside of any cluster.


Regression

- Find "best fitting" curve to existing data points.
- Points not matching curve are outliers.

Example:

y = x is best fitting curve For current data. The outliers are the three points outside of the curve.

Data Cleaning: Handling Inconsistent Data-

- Using known Functional dependencies
 - (example: item# → item)
- Revisiting data integration, as some inconsistencies might exist because of different names of the same attribute.

Data Integration

- Consolidate different source into one repository, usually data warehouse (schema re-consolidation)
 - » Using metadata
 - » Correlation analysis (measure how strongly one attribute implies the other attribute).

Data Reduction

- To increase the efficiency, can reduce the huge data set to a smaller representative.
- Methods:
 - » Data aggregation (data cubes)
 - example: number of items sold in year vs. in month.
 - » Dimension/attribute reduction
 - » Data Compression
 - » Discretization

Discretization and Concept Hierarchy

- Discretization is to transform the numeric (Continues) data to Categorical values.
- Some data Mining Algorithms only accept categorical values.
- Example:
 - » Continues data: 1,2,3,4,5,...,20
 - Discretized values: 1-5; 6-10; 11-15; 16-20
 - » Continues data for feature Age: 1,...,99
 - categorical values: 1-15: assign this range to concept "child"
 - 16-40: assign this range to concept "Young" >>
 - and so on **>>**

Data Normalization

- Scale the data value to a range using methods such as:
 - » Min-Max
 - » Z-Score
 - » Decimal Scaling

Data Normalization: Min-Max

• Linear transformation of the original input range into a newly specified data range (typically 0-1).

$$y' = \frac{y - \min}{\max - \min} (\max' - \min') + \min'$$

- Old min value is mapped to new min, min'.
- Old max is mapped to new max, *max*'.
- Let y be the original value, y' be the new value.
- min, max are the original min and max.
- min', max' are the new min and max.

Min-Max (Example)

 Consider old data that ranged from 0-100, we now obtain an equation to migrate it to 5-10 range.

$$y' = \frac{y - \min}{\max - \min} (\max' - \min') + \min'$$

$$y' = (y/20) + 5$$

$$y = 0, y' = 5$$

$$y = 10, y' = 5.5$$

$$y = 90, y' = 9.5$$

Data Normalization: **Z-Score**

- useful when min and max are unknown or outliers dominate the value min-max.
- The goal is that most of the data will lie within the origin to a standard deviation.
- If majority of data falls within 50 and 100, but you have a few data points outside of that range, zscore will compress most of the data into a small range.

$$y' = \frac{y - mean}{std}$$

Z-Score (Example)

у	y'					у	y'				
0.18	-0.84	Avg	0.68	std	0.59	20.00	-0.26	Avg	34.30	std	55.86
0.60	-0.14					40	0.11				
0.52	-0.27					65	0.55				
0.25	-0.72					70	0.64				
0.80	0.20					32	-0.05				
0.55	-0.22					8	-0.48				
0.92	0.40					5	-0.53				
0.21	-0.79					15	-0.35				
0.64	-0.07					250	3.87				
0.20	-0.80					32	-0.05				
0.63	-0.09					18	-0.30				
0.70	0.04					10	-0.44				
0.67	-0.02					-14	-0.87				
0.58	-0.17					22	-0.23				
0.98	0.50					45	0.20				
0.81	0.22					60	0.47				
0.10	-0.97					-5	-0.71				
0.82	0.24					7	-0.49				
0.50	-0.30					2	-0.58				
3.00	3.87					4	-0.55				
0.68	0.00										

Data Normalization: Decimal scaling

• divide the value by 10ⁿ where n is the number of digits of the maximum absolute value.

$$y' = \frac{y}{10^n}$$

» Example: X=900 is maximum value

$$\Rightarrow$$
 n = 3

 \Rightarrow 900 scales to 0.009.

Summary

- A main portion of Data Warehousing and Data Mining effort is to preprocess the data.
- Data cleaning, integration, reduction, and normalization are used to preprocess the data.