From http://nobelprize.org/physics/articles/ekspong/index.html Light is not the easiest of natural phenomena to describe; for many centuries, scientists have debated, and argued over, the nature of ligh. A key figure in this endeavour was Thomas Young, one of the most intelligent and clever scientists ever to live, who studied diffraction and interference of light already in 1803 with results that gave strong support to the wave theory of Christian Huygens as opposed to the particle or corpuscular theory of Isaac Newton. Further contributions were made by many other researchers, among them Augustin Jean Fresnel, who showed that light is a transverse wave. The mathematical theory of electromagnetism by James Clerk Maxwell, set up in 1864, led to the view that light is of electromagnetic nature, propagating as a wave from the source to the receiver. Heinrich Hertz discovered experimentally the existence of electromagnetic waves at radio-frequencies in the 1880s. In physics textbooks two phenomena are usually quoted demonstrating the particle nature of light: 1) the photoelectric effect and 2) the Compton scattering of X-rays. In some not so critical texts a third circumstance is erronously quoted, namely Planck's discovery of energy quanta, which he did in his analysis of heat radiation. The Nobel Committee honoured this monumental discovery by the Physics Prize in 1918, but did not make the mistake to give Planck credit for having discovered the particle nature of light.