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1 Introduction

The primary objective of data compression algo-
rithms is to reduce redundancy in data representa-
tion in order to decrease data storage requirement.
Data compression also offers an attractive approach
to reduce the communication cost by effectively uti-
lizing the available bandwidth in the data links. In
the nineties, we have seen an unprecedented explo-
sion of digital data on the information superhigh-
ways of the world. This data represents a variety of
objects from the multimedia spectrum such as text,
images, video, sound, computer programs, graphs,
charts, maps, tables and mathematical equations. To
be able to compact large amounts of multimedia data,
and route it through a busy network has emerged
as one of the biggest technological challenges of our
times. Recently, we have witnessed the simultaneous
and rapid development of easy and flexible informa-
tion browsing on the internet, parallel and multipro-
cessing, specialized hardware and software for imag-
ing, DSP and multidemdia technologies. These de-
velopments have generated an ever increasing number
of ‘killer” applications which are testing the existing
technologies to their limit. Some of these applications
are: digital library initiative, medical imaging, digi-
tal video production, parallel rendering and visualiza-
tion, text and image browsing and retrieval by content.
Most of these applications typically deploy large and
powerful centralized resources serving heterogeneous
and widespread client workstations or web browsers.
For these applications, a critical need is being felt
for aggressive and speedy compression/decompression
schemes to deal with the staggering amounts of data
on full to bursting network channels.

A generic compression/transmission system has
three component parts: an encoder, a channel and a
decoder. There has been and continues to be a flurry of
activities in the design and implementation of all three

components. For this paper, we will assume a noiseless
channel and concentrate on the design of algorithms
for the encoding and decoding processes, alternately
called the compression and the decompression pro-
cesses, respectively. The function of the encoder is to
produce a representation of the data in a form that
takes much less storage than the original data and the
function of the decoder is to recover after transmission
through the channel the original data. Thus, the de-
coder performs a reverse function of the encoder func-
tion. If the recovery of data is exact, the compression
algorithms are called lossless. The lossless compres-
sion algorithms are used for all kinds of text, scientific
and statistical databases, medical and biological im-
ages, astro-physical and remote-sensed satellite data.
If the recovery of data is approximate, the compres-
sion algorithms are called lossy. Lossy algorithms are
useful in image and video processing and constitute a
significant part of data transmission activities. Lossy
algorithms also use some form of lossless algorithm at
the final stage of encoding to obtain improvement of
compression performance.

The objective of this paper is three-fold: first, to
make a tutorial presentation of the most important
lossless compression algorithm; second, to make a sim-
ilar presentation of some of the basic concepts and
algorithms for image compression using vector quan-
tization, wavelet transform and optical flow; third, to
present new research results in both text and image
compression conducted in our research group during
the last couple of years.

2 Lossless Compression Algorithms

In this section, we will present a survey of lossless
compression algorithms. We will discuss fundamental
concepts of modeling, entropy coding and then dis-
cuss several classical coding techniques such as Huff-



man, arithmetic and some adaptive modeling tech-
niques leading to PPM ( prediction by partial match)
and and DMC( Dynamic Markov Compression) algo-
rithms. We will then describe the dictionary model
based algorithms such as th class of LZ algorithms and
conclude by presenting a recently discovered compres-
sion algorithm called bzip based on Burrows-Wheeler
transform.

3 Image Compression algorithms

The main objective of image and video compres-
sion algorithms is to compress the image or video
data into a compressed representation with constraints
imposed by channel bandwidth and storage overhead
while maintaining the highest possible quality. Unlike
text compression, image compression offers a much
wider spectrum of compression from high-definition
TV at 20 Mbps to very low-resolution telephone trans-
mission at the rate of 9.6 kbps. The field of image
compression is based on a solid foundation of classical
methods of transform coding, vector quantization and
recent advances of wavelet theory. With the advent of
ubiquitous internet technologies and multimedia ap-
plications, new research is needed to invent compres-
sion algorithms that meet the challenges of network
demands, bit rate, image quality and transmission de-
lays for real-time performance.

In this section, we will review briefly some of the
fundamental concepts of image compression theory.
We will describe the use of block-based transform
techniques such as discrete cosine transform(DCT) as
well a vector quantization(VQ) and hierarchical vec-
tor quantization(HVQ). We will then present the basic
theory of wavelets and combine these to develop multi
resolution wavelet based hierarchical vector quantiza-
tion (WHVQ) and embedded zero tree (EZW) algo-
rithm. We will conclude this section with a discus-
sion of predictive methods used for video compression
such as differential pulse code modulation(DPCM),
and block matching algorithm(BMA) and optical flow
methods for motion compensation. Finally, the JPEG
and MPEG standards will be presented.

4 New Algorithms for Text and Image
Compression

4.1 Text Compression

We first present our results on text compression al-
gorithms.

Star(*) Encoding

It is possible to replace certain characters in a word
by a special place holder character and retain a few key
characters so that the word is still retrievable. Con-
sider the set of 6-letter words: packet, parent, patent,
peanut. Denoting an arbitrary character by a special
symbol ‘x’) the above set of words can be unambigu-
ously spelled as skcx % %, #%k7k % % sokik % %, kex * kx,
An unambiguous representation of a word by a partial
sequence of letters from the original sequence of let-
ters in the word interposed by special characters ‘x’ as
place holders will be called a signature of the word.
The collection of English words in a dictionary in the
form of a lexicographic listing of signatures will be
called an encoded dictionary and an English text
completely transformed using signatures from the en-
coded dictionary will be called an encoded or pre-
processed text. We partition the encoded dictionary
D into disjoint dictionaries D;, (1 < i < n), i denot-
ing the length of words in D;. Within each D; we
sort the words in descending order based on available
frequency information. We then assign a signature
to each word based on its location in the ordering.
The first word receives a signature consisting of i *’s.
The next 52i words receive a signature consisting of
a single letter (either lower case or upper case) in a
unique position, surrounded by ¢ — 1 #’s. For example,
the second word of length five receives the signature
a * x x %, The next 52 x 52 x C(i,2) words receive a
signature consisting of two letters in unique positions
as a pair surrounded by i — 2 *’s (where C(i,2) rep-
resents the number of ways of choosing two positions
from i positions). For example, one five-letter word
receives a signature of bx D xx. It was never necessary
to use more than two letters for any signature in the
dictionary using this scheme, although it should be
clear how to continue the pattern for three, four, etc.,
letters. It is important to note that for any encoded
text, the most frequently used character will likely be
‘x” and data compression schemes are able to use such
redundancy. In fact, ‘*’ needs no more than one bit
for all the compression methods that we implemented,
with the exception of Bzip. The Bzip algorithm uses
a different method to achieve its compression, and our
research shows that a different method of encoding
words yields better results with Bzip.

Properties of Encoding Methods

Each encoding scheme used during preprocessing
can be described by a set of rules defining a transfor-
mation from an input character sequence to an output
character sequence. Each character is an element from
the set S of valid input symbols. Typically S is the



ASCII character set or a superset of it. In our tests we
used the ECMA Latin-1/94 character set, which is an
8-bit extension of the ASCII character set, augmented
by a set of international characters.

S can be partitioned into two sets: L, containing all
letters, and P, containing all other characters. Words
in a dictionary are sequences of letters, i.e. sequences of
elements of L. Words in the input text are sequences
of letters, which are surrounded by the beginning-of-
file marker, the end-of-file marker, or elements of P.
This means in the input text a character sequence of
elements of L, which immediately follows or precedes
another element of L, is not considered a word. A
preprocessing algorithm scans through the input text,
finds words, tries to locate those words in the dictio-
nary, and if it finds a match it then replaces each word
with its word encoding. In order to allow the receiver
to undo the preprocessing done by the sender, a word
encoding must have certain properties, to distinguish
and delimit it from other parts of the text, and to al-
low a unique reverse mapping. We defined the follow-
ing set of rules, which is common to all preprocessing
schemes we used:

e The set P is further partitioned into three sets:
P, , which contains a single escape character, Ps,
which is the set of all characters which are used
as special characters for word encodings, and P,
which contains all remaining elements of P.

e Each encoding is a sequence of characters which
contains at least one character from Py, plus zero
or more characters from L.

e No two different words may have the same word
encoding.

e Any character from P; or P, occurring in the in-
put text is escaped using the escape character
from P,.

These rules ensure that each word encoding is
unique, and that the receiver can distinguish and de-
limit word encodings from other portions of the pre-
processed file. Typically one of the characters in P; is
used to identify a sequence as a word encoding and to
encode the particular word. The other charactersin P;
are used to encode special properties of a word, such
as capitalization. With the ‘star encoding’ scheme
Po={\}, P, ={""*}.

The ‘Bzip’ Encoding Method

The ‘Bzip2’ compression algorithm described in de-
tail in Section 2, has the advantage that it com-
bines the high speed of algorithms such as gzip with

the good compression ratio usually only achieved by
rather slow and memory-intensive compression algo-
rithms such as PPM or DMC. The idea behind Bzip2
is that in the second stage ‘similar’ text sequences
in the input file are sorted together. The charac-
ters cyclically immediately preceding these sequences
are located in the last character position of the cor-
responding rotation, and are thus passed to the third
stage closely together. Often, data files have some
amount of local context, i.e. similar text sequences
are preceded by the same character, so character se-
quences can be used to predict the preceding charac-
ter. Bzip2 uses this principle by sorting rotations in
such a way that the characters predicted by similar
character sequences are clustered together in the in-
put to the third stage. This increases the locality in
the data file, which can then be exploited by move-
to-front encoding and Huffman encoding in the third
stage. We tried to combine our preprocessing method
with Bzip2, to improve the compression ratio of Bzip2
even further. Initial improvements were not as sig-
nificant as for other compression algorithms (our gain
with Bzip2 only averaged 1.6%), so we attempted to
find out how our method could be improved to yield
better results with Bzip2. An analysis of the inter-
action between our algorithm and Bzip2 revealed two
reasons for the low gain:

e The run-length-encoding algorithm used in the
first stage of Bzip2 tends to get used very fre-
quently with the files generated by star-encoding,
to replace long sequences of ‘*’ characters by
shorter sequences. Even though this decreases the
size of the input file, it partially defeats the pur-
pose of star-encoding, because it throws off the
model of the second stage of Bzip2, so the en-
coder does not get the benefit of using very short
codes for ‘*’ characters.

e The second stage of Bzip2 basically relies on the
observation that a character sequence in the in-
put file can be used to help predict the charac-
ter preceding it. This property typically holds for
the English language (with sequences being words
or syllables), but does not hold as well for star-
encoded files, because the sequences of ‘*’ char-
acters do not provide enough context to make a
reasonable prediction of the preceding character.

From these observations we decided to modify our
encoding scheme as follows, called ‘Bzip-encoding’ in
this proposal. Bzip-encoding uses the same sets L,
P, P,, P, as star-encoding. However the way word



encodings are formed is different: Each word is en-
coded by a sequence of characters of the same length
as the word itself. Exceptions are capitalized words,
which require additional encoding. The scheme used
to encode capitalization is identical to the one de-
scribed in [FM96, ?], using characters from P,. The
first character of each word encoding is a ‘*’ charac-
ter. No other ‘*’ characters appear in an encoding.
This allows Bzip2 to strongly predict the space char-
acter preceding a ‘*’ character. For words of four or
more characters in length, the last three characters
form an encoding of the dictionary offset of the corre-
sponding word, in the following manner: entry D;[0]
is encoded as ‘zaA’. For entries D;[j] with j > 0 the
last character cycles through [A-Z], the second-to-last
character cycles through [a-z], and the third-to-last
character counts downward from ‘z’ to ‘a’, in this or-
der. This allows for 17576 word encodings for each
word length, which is sufficient for the dictionaries we
used. If more word encodings are required, then this
scheme could easily be extended to four or more char-
acters. For words of more than four characters, the
characters between the initial ‘*’ and the final three-
character-sequence in the word encoding is filled up
with a suffix of the string ‘...nopqrstuvw’. For in-
stance, the first word of length 10 would be encoded
as ‘“*rstuvwzaA’. words with three or fewer characters
are treated as special cases, and use different encod-
ings:

e Words of length three start with a “*’, followed
by two characters encoding the dictionary offset.
The last characters cycles through [A-Z], and the
second-to-last character cycles through [a-z,A-Z],
in this order, allowing 1352 different word encod-
ings.

e Words of length two start with a ‘*’, followed by a
character that cycles through [A-Z,a-z], allowing
52 different word encodings.

e Ounly one word of length one can be encoded. Its
encoding is a single “*’ character.

This encoding scheme provides a stronger local con-
text within each word encoding, and on the border
between a word encoding and its delimiters, because
there is a correlation between the type of character
(‘*’ character, upper-case characters, lower-case char-
acters with a high value, lower-case character with a
low value) and the relative position of that character
within the word encoding. This stronger local context
is supposed to increase the ability of Bzip2 to pre-
dict the preceding character for a character sequence,

and thus increase the compression ratio of Bzip2 as a
back-end compression algorithm.
Experimental Results

The results reported in this section are preliminary,
but we believe that they demonstrate the significant
potential of the approach. We used ten text files and
an English dictionary as listed in Table I obtained from
World Wide Web.! We used an electronic version of
an English dictionary for our work. This dictionary
contained nearly 60,000 words of up to 21 letters long.
For frequencies of words in English text, we referred
to [HoCo92, CDR71] and used information about the
most frequent 100 words. In English, the most fre-
quent words are less than five letters long.

Each of our experiments considered a different com-
pression algorithm augmented with our encoding ap-
proach. The compression algorithms used were Unix
compress (comp), GNU zip with minimal compression
(gzip -1), GNU zip with maximal compression (gzip -
9)[Table 2], and arithmetic (arith) using a character
based model, DMC, PPM[Table 3] and Bzip[table 5]
methods. All compression algorithms were combined
with our *-encoding method, with the exception of
Bzip: that algorithm was combined with our Bzip-
encoding method.

The results of these experiments are summarized
in the following tables. It is well known that these al-
gorithms beat the Huffman code in compression per-
formance, so we do not report results for Huffman
code in this proposal. The compression is expressed
as BPC (bits per character) and also as a percentage
remaining with respect to the original size of the file.
Note that almost all of the encoded compressions yield
uniformly better results than the unaided compres-
sions. In addition to the benchmark texts we also used
one HTML document (220396 bytes) for testing: the
current PNG specification document available from
http://wuw.w3.org/pub/WWW/TR/REC-png.html. A
summary of average performance of star-encoding is
shown in Table 4. The results shown in Table 5 indi-
cate that the new ‘Bzip’ encoding algorithm improves
the compression ratio of the standard compression
algorithms ‘compress’, ‘gzip’ and ‘Bzip’ by approxi-
mately 5% to 12%, and that the encoding method is
suitable for text files as well as HTML documents.

In particular our results for Bzip encoding are
promising, because the Bzip algorithm combines ex-
cellent compression with low CPU time requirements,

"We would like to acknowledge the individuals and organi-
zations who collected these electronic versions online, including
Professor Eugene F. Irey (University of Colorado at Boulder)
and Project Gutenberg and individuals responsible for the Cal-
gary corpus



and is thus very well suited for many practical ap-
plications, and is expected to be used as a standard
compression algorithm on the Internet.

4.2 Image and Video Compression

In this section, we will present in the form of ab-
stracts, new results on text and image compression
algorithms. The details of the algorithms will be pre-
sented verbally at the the Workshop.

Hidden Bit Algorithm

We develop a real-time image coding system ca-
pable of adapting instantaneously to the available
channel bandwidth. The range of operational band-
widths for the proposed system has a finer calibra-
tion than ordinary hierarchical vector quantization
(HVQ) or wavelet based hierarchical vector quanti-
zation (WHVQ) methods suggested in the literature.
These properties make it very attractive for networks
with fluctuating available bandwidth, like the inter-
net. All encoder and decoder operations are strictly
constant time per pixel, proceeding through table
lookups, and are intrinsically suitable for parallel and
hardware implementation.

In tree-structured vector quantization (TSVQ), the
codewords are arranged in a tree structure, and each
input vector is successively mapped from the root node
to the minimum distortion leaf node. This successively
partitions and refines the input space, as the depth of
the tree increases. This enables ”embedded coding” to
be performed, as more accuracy is added as the path
from the root to the leaf is traversed, and additional
code (or label) bits are added.

Numerous tree growing and pruning algorithms
have been proposed in the literature. A simplistic de-
sign is to grow a balanced binary tree one level at a
time, typically using the ”splitting” method, which is
a variation of the generalized Lloyd algorithm (GLA).
The first step is identical to the GLA, i.e. finding the
optimum 0 bit code - the centroid of the training pop-
ulation. This codeword is then split into two, and the
GLA is run to produce a good 1-bit code. The algo-
rithm now diverges slightly from the standard GLA,
by splitting the 1-bit codewords by training only on
the partition of the training set corresponding to the
codeword from the previous step, instead of on the
entire. This procedure is then iterated to find a bal-
anced, binary codebook of the required depth, which
implements a fixed-rate code.

Embedding a binary tree structure in HVQ code tables

In ordinary vector quantization, the codewords lie
in an unstructured codebook, and each input vector

is mapped to the nearest neighbor (in terms of Eu-
clidean or similar distortion measure) codeword. This
induces a partition of the input space into Voronoi
regions. In TSVQ, the codewords are arranged in a
recursive tree structure, with successive approxima-
tion mapping from the root to the leaf nodes. This
induces a hierarchical partitioning of the vector space.
Thus, an input vector can be accurately represented
by the label of the leaf node, but can also be repre-
sented with less accuracy by a prefix of this path from
the root, in a ”gracefully degradation” of the encoding
accuracy, as the path is made shorter. We will now
illus-trate our approach, which is an extension of the
Makhoul-Riskin-Gray algorithm, .

Growing

We first start the binary tree codebook growing pro-
cess by finding the centroid of the training set vectors,
say node A in Figure la. Our tree-structured hierar-
chical table-lookup vector quantizer (TSHVQ) code-
book consists of only one entry at this point. Next,
we split node A into B and C, using the standard GLA
procedure outlined in [9]. At the end of the training
step, our binary tree and codebook appear as shown in
Figure 1b. We then follow the Makhoul-Riskin-Gray
strategy of greedily splitting the node with largest
lambda (lambda = -Delta D/Delta R), until the leaves
number the next power of 2, when we re-arrange the
codebook (Figure 1c). We carry on in this fashion un-
til we have the required number of leaf nodes in our
TSHVQ codebook.

Pruning

prunable” nodes in the bottom half of the TSHVQ
table. Our definition of ”best prunable” follows the
generalized BFOS principle, i.e. they are the nodes
which produce minimum lambda, while decreasing the
bit-rate. With the codebook structure and secondary,
tertiary, etc. indexing as shown in Figure lc, the en-
coder is able to instantaneously prune away half of the
nodes in the table, in an optimal manner, simply by
using the secondary indices to index into the top half.

The difference of our TSHV(Q approach with that
of Makhoul/Riskin/Gray’s algorithm is that we do not
prune leaves one at a time, but rather prune away
sets of 2i leaves at once. This is because we can only
change the operational bit-rate of the encoder by in-
teger amounts of bit-rate, and we achieve this by dou-
bling, halving, quartering, etc. the subsets of the avail-
able codebooks to index into. The additional invest-
ment of time (in the off-line training mode) and space
in maintaining the multiple indexing in the TSHVQ
tables (see Figure 1c) pays off during encoding, be-

As shown in Figure 1d), we organize the 8 "best



Name Size (bytes) | Description
book1 768771 | Calgary Corpus bookl
book2 610856 | Calgary Corpus book?2
news 377109 | Calgary Corpus news
paperl 53161 | Calgary Corpus paperl
paper2 82199 | Calgary Corpus paper2
twocity 760697 | A Tale of Two Cities
dracula 863326 | Dracula
ivanhoe 1135308 | Ivanhoe
mobydick 987597 | Moby Dick
franken 427990 | Frankenstein
Table 1: Test corpus
Name compress *-compress gzip-1 *-gzip-1 gzip-9 *-gzip-9
% | BPC % | BPC % | BPC % | BPC % | BPC % | BPC
book1 43% | 3.46 | 38% | 3.01 | 47% | 3.80 | 45% | 3.58 | 41% | 3.25 | 37% | 2.94
book2 41% | 3.28 | 37% | 2.96 | 41% | 3.26 | 39% | 3.15 | 34% | 2.70 | 31% | 2.51
news 48% | 3.86 | 46% | 3.69 | 44% | 3.48 | 42% | 3.40 | 38% | 3.06 | 37% | 2.93
paperl 47% | 3.77 | 42% | 3.37 | 41% | 3.25 | 40% | 3.16 | 35% | 2.79 | 32% | 2.58
paper?2 44% | 3.52 | 38% | 3.03 | 43% | 3.41 | 41% | 3.27 | 36% | 2.89 | 33% | 2.60
twocity 41% | 3.28 | 36% | 2.86 | 45% | 3.62 | 42% | 3.40 | 38% | 3.05 | 34% | 2.74
dracula 42% | 3.35 | 37% | 2.99 | 46% | 3.70 | 44% 35| 39% | 3.13| 36% | 2.87
ivanhoe 42% | 3.34 | 37% | 2.94 | 46% | 3.68 | 43% | 3.48 | 39% | 3.11 | 35% | 2.82
mobydick | 43% | 3.46 | 38% | 3.02 | 47% | 3.78 | 44% | 3.55 | 40% | 3.23 | 36% | 2.90
franken 40% | 3.19 | 35% | 2.77 | 46% | 3.64 | 43% | 3.42 | 38% | 3.04 | 34% | 2.73
Table 2: Compression results for ‘compress’ and gzip algorithms
Name arith *_arith DMC *DMC PPM *PPM
% | BPC % | BPC % | BPC % | BPC % | BPC % | BPC
book1 57% | 4.58 | 44% | 3.49 | 31% | 248 | 29% | 2.35 | 31% | 2.45 | 30% | 2.38
book2 61% | 4.85 | 48% | 3.80 | 27% | 2.19 | 27% | 2.14 | 27% 2.14 | 27% | 2.16
news 66% | 5.24 | 60% | 4.77 | 35% | 2.77 | 34% | 2.71 | 33% | 2.62 | 32% | 2.58
paperl 63% | 5.07 | 52% | 4.15 | 34% | 2.73 | 32% | 2.53 | 30% | 2.36 | 30% | 2.38
paper2 58% | 4.67 | 44% | 3.53 | 32% | 2.59 | 29% | 2.35 | 29% | 2.34 | 29% | 2.30
twocity 56% | 4.51 | 42% | 3.35 | 29% | 2.32 | 28% | 2.21 | 29% | 2.31 | 28% | 2.24
dracula 55% | 4.42 | 42% | 3.39 | 31% | 2.44 | 30% | 2.38 | 30% | 2.38 | 29% | 2.35
ivanhoe 57% | 4.55 | 44% | 3.53 | 30% | 2.42 | 29% | 2.29 | 30% | 2.36 | 28% | 2.27
mobydick | 56% | 4.50 | 42% | 3.36 | 32% | 2.57 | 30% | 2.41 | 31% | 2.48 | 30% | 2.36
franken 56% | 4.46 | 40% | 3.20 | 30% | 2.38 | 28% | 2.22 | 29% | 2.29 | 28% | 2.23

Table 3: Compression results for arithmetic, DMC, and PPM algorithms




Name original BPC | BPC with *-enc gain
compress 3.57 3.20 | 10.4%
gzip -1 3.45 331 | 4.1%
gzip -9 2.97 273 | 8.1%
arith 4.84 3.96 | 18.2%
DMC 2.73 251 | 8.1%
PPM 2.94 2.74 | 7.8%

Table 4: Average performance for star-encoding

Name Bzip2 -9 e-Bzip2 -9

% | BPC % | BPC
bookl 30% 2.42 | 29% 2.32
book2 26% | 2.06 | 25% | 2.00
news 31% | 252 | 31% | 2.45
paperl 31% | 249 | 29% | 2.35
paper2 30% | 244 | 28% | 2.27
twocity 28% 2.26 | 27% 2.17
dracula 29% | 2.36 | 29% | 2.30
ivanhoe 29% | 2.39 | 28% | 2.23
mobydick | 31% 2.46 | 29% 2.33
franken 29% | 2.29 | 27% | 2.16

Table 5: Compression results for Bzip algorithm
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cause we are able to instantaneously and optimally
(due to BFOS principle) switch the operational bit-
rate of the encoder, on the fly, in response to fluctu-
ations in available bandwidth of the channel. So the
encoder is very suitable for operating in a feed-back
loop with a channel monitoring module.

Encoder and Decoder operations

We will illustrate these operations with reference
to an example, and Figure 2. Say we are encod-ing
at 4 bpp, i.e. sending the 8 bit codes for length 2-
vectors, after 1 level of wavelet based HVQ (WHVQ).
If instead we mapped all possible incoming pairs (28
x 28) to a subset of 27 of the 28 codebook vectors,
then we would be using 7/2 = 3.5 bpp. We would also
not be using (bottom) half of the available codebook.
If we used a 26 subset, we would use 3 bpp, and so
on. This is pos-sible, because we create multiple (i.e.
secondary and tertiary in this case) indexing in the 28
x 28 input table, for different bit rates. This is shown
in Figure 2.

We are assured that the increased distortion at
lower operational bit-rates will be optimal, due to
the binary tree-structured HVQ codebook design ex-
plained in section 2. This makes the act of indexing
into the top half of the available codebook equiva-
lent to optimally pruning away all the leaves in the
search tree, and yet doing this implicitly, through ta-
ble lookups, and in constant time.

If we carry on the lookup-and-transform to the next
stage, then we get 2 bpp if we use all 28 code-book
vectors from the second level lookup table, 1.75 bpp
if we use a 27 sub-set, 1.5 for 26, etc. If we need a
bit rate of 2 or less, we should use the full codebook
set of the next level, as the ultimate coding rate will
only depend on the rate of the final stage, and there is
no point in coarse coding at the preceding levels. This
gives us a finer calibration of operational bit-rates than
either the last-stage table TSHVQ, or straight HVQ.
The decoder stays the same as in ordinary HVQ - it



directly looks up the codebook vectors, and uses these
to reconstruct the encoded images.

Embedded Optical Flow Based Motion Com-
pensation in Finite State Hierarchical Vector
Quantization

We propose a video coding and delivery scheme
which is geared towards low bit-rate and real-time
performance requirements. We use a finite state
wavelet-based hierarchical lookup vector quantiza-
tion (FSWHVQ) scheme, which embeds the optical
flow calculations in table-lookups. This video cod-
ing scheme is both fast (table-lookups) and accurate
(dense motion field), and avoids the blocking arti-
facts and poor prediction which plagues block cod-
ing schemes at low bit rates. For restricted image
compression/ transmission scenarios like teleconfer-
encing, for which a good training set may be avail-
able, the FSWHVQ scheme may be viewed as stor-
ing as an internal representation in its lookup tables,
a valid and complete model of the problem domain.
To get this kind of compression, we need to squeeze
out the last drops of spatial and temporal correla-
tion, by using a combination of motion compensation
(temporal) and block coding or vector quantization
(spatial) techniques. MPEG (BMA/DCT) seemed to
be a good solution, by estimating the motion of each
image block by a single vector. But at very low bit
rates, this coarse approximation suffers from very vis-
ible and unpleasant artifacts. Therefore, we are faced
with the following design criteria for any practical low
bit-rate compression scheme: a) The motion estima-
tion should be accurate. This automatically means
that the residual errors will be small, and can be com-
pactly coded; b) Rate/ distortion (R/D) should be
optimal, and ideally this should be adaptable (i.e. dy-
namically tunable) according the bandwidth availabil-
ity; and ¢) Both encoding and decoding should be fast,
possible in real time, and/or realizable in VLSI. In
this work we are motivated to satisfy the above de-
sign criteria as closely as possible. To this end, we
propose the following solu-tions: a) Use optical flow
instead of block matching, to obtain a dense and ac-
curate motion field estimation; b) Use vector quan-
tization, which uses an overall rate-distortion opti-
mization scheme in the codebook design (i.e. train-
ing) phase; and c) use FSHVQ (finite-state hierarchi-
cal table-lookup vector quantization), which ”embeds”
the optical flow computa-tions, by storing state infor-
mation. This gives a fast encoder and decoder which
proceed through table-lookups rather than complex
computations. The operational bit-rate can then be
dynamically tuned to the available bandwidth, by us-
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Figure 3: Derivation of the index of Optical Flow

ing successive stages of table-lookups. Optical flow has
been used in other video coding work, but not in a fast
coding scheme like table-lookups which is practical for
a real-time encoder, and which can be implemented in
hardware. The idea of embedding higher-level, e.g.
classification tasks in the HVQ frame-work was in-
troduced by Chaddha and Gray. Finite state table-
lookup hierarchical vector quantization (FSHVQ) was
used by Chaddha, Mehrotra and Gray for still im-
age coding, using side intensities as the ”state”. We
extend the FSHVQ idea for image sequences, by us-
ing code-words used to encode the previous frame,
and previously esti-mated motion fields as the "state”.
The new technique introduced here is the embedding
of optical flow in FSHVQ for video coding.
Embedding Optical Flow in Finite State HV(Q)

We will illustrate the method with a specific exam-
ple (Figure 3). In normal HVQ, blocks of pixels are
vector quantized (using table-lookups) by quantizing,
or "merging” two vectors (at the first step these are
a pair of pixel values), alternatively, along rows and
columns. So a 2x2 block of pixels (Figure 3) is quan-
tized into one table index in two steps.

First, two row-wise lookups quantize the row-wise
pixel values to give two table indices, Y0 and Y1,
followed by a column-wise second-level table lookup,
which quantizes the column-wise indices into one in-
dex, Z0, which represents a 2x2 code-book vector.
Horn and Schunck’s optical flow method proceeds by
apply-ing spatial and temporal derivative masks, e.g.
of size 2x2, at corresponding spatial locations of the
current and previous images. So if the quantized code-
book indices of the previous frame (at the 2x2 block
quantization level) are stored, along with the motion
field averages u,, and wv,, as the state, then the op-
tical flow vector at time ¢ and at location z,y can be
conveniently expressed as a function of the state at
time ¢, s¢;, and the previous and current images, i; 1
and i; by the equation (u,v); = f(s¢,4¢t_1,it) This
simply means that feeding the (2x2 level) code-book



indices Z0; and Z0;_; into H, the FSHVQ table for
state s, we can look up the index of the motion vec-
tor, (u,v). The FSHVQ code books and tables are, of
course, populated in the training phase, by using the
Horn and Schunck formulation. This embeds the op-
tical flow computation in table-lookups, and gives an
extremely fast encoder. The residual errors for each
block can be sent using a lower bit-rate HVQ scheme
(since the residual errors are usually small and ran-
domly distributed), or by a lattice vector quantiza-
tion (LVQ) scheme, which requires no additional train-
ing. To complete the encoding, the state is updated
by storing a matrix of the local motion field vectors
(Uaw,Vay), and the output or reconstructed image is
stored as the ”previous image”, it for the next frame
at ¢t 4+ 1, as shown by the equation i; = #;. This al-
lows the encoder to track the decoder, and prevent
error accumulation - it represents the ”closed loop”
of the generic FSHVQ system, as the previous image,
it, and the local motion field averages, (tay, Vay), toO-
gether comprise the state of this encoder.

Coding Results

We show some experimental results of coding the
”Claire” news caster sequence at 100 KB/s (sustained)
after the initial frame was sent (intracoded) in Figure
4.

The optical flow technique gave an average PSNR
of 36.0dB, whereas BMA gave 34.8dB. Also our algo-
rithm performed much better at the edges, whereas
BMA gave severe blocking artifacts.
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