
Algorithms for Text and Image CompressionAmar Mukherjee Holger Kruse Kunal Mukherjeeamar@cs.ucf.edu kruse@cs.ucf.edu mukherje@cs.ucf.eduDepartment of Computer ScienceUniversity of Central FloridaOrlando, FL 328161 IntroductionThe primary objective of data compression algo-rithms is to reduce redundancy in data representa-tion in order to decrease data storage requirement.Data compression also o�ers an attractive approachto reduce the communication cost by e�ectively uti-lizing the available bandwidth in the data links. Inthe nineties, we have seen an unprecedented explo-sion of digital data on the information superhigh-ways of the world. This data represents a variety ofobjects from the multimedia spectrum such as text,images, video, sound, computer programs, graphs,charts, maps, tables and mathematical equations. Tobe able to compact large amounts of multimedia data,and route it through a busy network has emergedas one of the biggest technological challenges of ourtimes. Recently, we have witnessed the simultaneousand rapid development of easy and 
exible informa-tion browsing on the internet, parallel and multipro-cessing, specialized hardware and software for imag-ing, DSP and multidemdia technologies. These de-velopments have generated an ever increasing numberof `killer' applications which are testing the existingtechnologies to their limit. Some of these applicationsare: digital library initiative, medical imaging, digi-tal video production, parallel rendering and visualiza-tion, text and image browsing and retrieval by content.Most of these applications typically deploy large andpowerful centralized resources serving heterogeneousand widespread client workstations or web browsers.For these applications, a critical need is being feltfor aggressive and speedy compression/decompressionschemes to deal with the staggering amounts of dataon full to bursting network channels.A generic compression/transmission system hasthree component parts: an encoder, a channel and adecoder. There has been and continues to be a 
urry ofactivities in the design and implementation of all three

components. For this paper, we will assume a noiselesschannel and concentrate on the design of algorithmsfor the encoding and decoding processes, alternatelycalled the compression and the decompression pro-cesses, respectively. The function of the encoder is toproduce a representation of the data in a form thattakes much less storage than the original data and thefunction of the decoder is to recover after transmissionthrough the channel the original data. Thus, the de-coder performs a reverse function of the encoder func-tion. If the recovery of data is exact, the compressionalgorithms are called lossless. The lossless compres-sion algorithms are used for all kinds of text, scienti�cand statistical databases, medical and biological im-ages, astro-physical and remote-sensed satellite data.If the recovery of data is approximate, the compres-sion algorithms are called lossy. Lossy algorithms areuseful in image and video processing and constitute asigni�cant part of data transmission activities. Lossyalgorithms also use some form of lossless algorithm atthe �nal stage of encoding to obtain improvement ofcompression performance.The objective of this paper is three-fold: �rst, tomake a tutorial presentation of the most importantlossless compression algorithm; second, to make a sim-ilar presentation of some of the basic concepts andalgorithms for image compression using vector quan-tization, wavelet transform and optical 
ow; third, topresent new research results in both text and imagecompression conducted in our research group duringthe last couple of years.2 Lossless Compression AlgorithmsIn this section, we will present a survey of losslesscompression algorithms. We will discuss fundamentalconcepts of modeling, entropy coding and then dis-cuss several classical coding techniques such as Hu�-



man, arithmetic and some adaptive modeling tech-niques leading to PPM ( prediction by partial match)and and DMC( Dynamic Markov Compression) algo-rithms. We will then describe the dictionary modelbased algorithms such as th class of LZ algorithms andconclude by presenting a recently discovered compres-sion algorithm called bzip based on Burrows-Wheelertransform.3 Image Compression algorithmsThe main objective of image and video compres-sion algorithms is to compress the image or videodata into a compressed representation with constraintsimposed by channel bandwidth and storage overheadwhile maintaining the highest possible quality. Unliketext compression, image compression o�ers a muchwider spectrum of compression from high-de�nitionTV at 20 Mbps to very low-resolution telephone trans-mission at the rate of 9.6 kbps. The �eld of imagecompression is based on a solid foundation of classicalmethods of transform coding, vector quantization andrecent advances of wavelet theory. With the advent ofubiquitous internet technologies and multimedia ap-plications, new research is needed to invent compres-sion algorithms that meet the challenges of networkdemands, bit rate, image quality and transmission de-lays for real-time performance.In this section, we will review brie
y some of thefundamental concepts of image compression theory.We will describe the use of block-based transformtechniques such as discrete cosine transform(DCT) aswell a vector quantization(VQ) and hierarchical vec-tor quantization(HVQ). We will then present the basictheory of wavelets and combine these to develop multiresolution wavelet based hierarchical vector quantiza-tion (WHVQ) and embedded zero tree (EZW) algo-rithm. We will conclude this section with a discus-sion of predictive methods used for video compressionsuch as di�erential pulse code modulation(DPCM),and block matching algorithm(BMA) and optical 
owmethods for motion compensation. Finally, the JPEGand MPEG standards will be presented.4 New Algorithms for Text and ImageCompression4.1 Text CompressionWe �rst present our results on text compression al-gorithms.

Star(*) EncodingIt is possible to replace certain characters in a wordby a special place holder character and retain a few keycharacters so that the word is still retrievable. Con-sider the set of 6-letter words: packet, parent, patent,peanut. Denoting an arbitrary character by a specialsymbol `�', the above set of words can be unambigu-ously spelled as ��c� � �, ��r� � �, ��t� � �, �e� � ��.An unambiguous representation of a word by a partialsequence of letters from the original sequence of let-ters in the word interposed by special characters `�' asplace holders will be called a signature of the word.The collection of English words in a dictionary in theform of a lexicographic listing of signatures will becalled an encoded dictionary and an English textcompletely transformed using signatures from the en-coded dictionary will be called an encoded or pre-processed text. We partition the encoded dictionaryD into disjoint dictionaries Di; (1 � i � n), i denot-ing the length of words in Di. Within each Di wesort the words in descending order based on availablefrequency information. We then assign a signatureto each word based on its location in the ordering.The �rst word receives a signature consisting of i �'s.The next 52i words receive a signature consisting ofa single letter (either lower case or upper case) in aunique position, surrounded by i�1 �'s. For example,the second word of length �ve receives the signaturea � � � �. The next 52 � 52 � C(i; 2) words receive asignature consisting of two letters in unique positionsas a pair surrounded by i � 2 �'s (where C(i; 2) rep-resents the number of ways of choosing two positionsfrom i positions). For example, one �ve-letter wordreceives a signature of b�D��. It was never necessaryto use more than two letters for any signature in thedictionary using this scheme, although it should beclear how to continue the pattern for three, four, etc.,letters. It is important to note that for any encodedtext, the most frequently used character will likely be`�' and data compression schemes are able to use suchredundancy. In fact, `�' needs no more than one bitfor all the compression methods that we implemented,with the exception of Bzip. The Bzip algorithm usesa di�erent method to achieve its compression, and ourresearch shows that a di�erent method of encodingwords yields better results with Bzip.Properties of Encoding MethodsEach encoding scheme used during preprocessingcan be described by a set of rules de�ning a transfor-mation from an input character sequence to an outputcharacter sequence. Each character is an element fromthe set S of valid input symbols. Typically S is the2



ASCII character set or a superset of it. In our tests weused the ECMA Latin-1/94 character set, which is an8-bit extension of the ASCII character set, augmentedby a set of international characters.S can be partitioned into two sets: L, containing allletters, and P , containing all other characters. Wordsin a dictionary are sequences of letters, i.e. sequences ofelements of L. Words in the input text are sequencesof letters, which are surrounded by the beginning-of-�le marker, the end-of-�le marker, or elements of P .This means in the input text a character sequence ofelements of L, which immediately follows or precedesanother element of L, is not considered a word. Apreprocessing algorithm scans through the input text,�nds words, tries to locate those words in the dictio-nary, and if it �nds a match it then replaces each wordwith its word encoding. In order to allow the receiverto undo the preprocessing done by the sender, a wordencoding must have certain properties, to distinguishand delimit it from other parts of the text, and to al-low a unique reverse mapping. We de�ned the follow-ing set of rules, which is common to all preprocessingschemes we used:� The set P is further partitioned into three sets:Pe, which contains a single escape character, Ps,which is the set of all characters which are usedas special characters for word encodings, and Pr,which contains all remaining elements of P .� Each encoding is a sequence of characters whichcontains at least one character from Ps, plus zeroor more characters from L.� No two di�erent words may have the same wordencoding.� Any character from Ps or Pe occurring in the in-put text is escaped using the escape characterfrom Pe.These rules ensure that each word encoding isunique, and that the receiver can distinguish and de-limit word encodings from other portions of the pre-processed �le. Typically one of the characters in Ps isused to identify a sequence as a word encoding and toencode the particular word. The other characters in Psare used to encode special properties of a word, suchas capitalization. With the `star encoding' schemePe = f\g, Ps = f~`^*g.The `Bzip' Encoding MethodThe `Bzip2' compression algorithm described in de-tail in Section 2, has the advantage that it com-bines the high speed of algorithms such as gzip with

the good compression ratio usually only achieved byrather slow and memory-intensive compression algo-rithms such as PPM or DMC. The idea behind Bzip2is that in the second stage `similar' text sequencesin the input �le are sorted together. The charac-ters cyclically immediately preceding these sequencesare located in the last character position of the cor-responding rotation, and are thus passed to the thirdstage closely together. Often, data �les have someamount of local context, i.e. similar text sequencesare preceded by the same character, so character se-quences can be used to predict the preceding charac-ter. Bzip2 uses this principle by sorting rotations insuch a way that the characters predicted by similarcharacter sequences are clustered together in the in-put to the third stage. This increases the locality inthe data �le, which can then be exploited by move-to-front encoding and Hu�man encoding in the thirdstage. We tried to combine our preprocessing methodwith Bzip2, to improve the compression ratio of Bzip2even further. Initial improvements were not as sig-ni�cant as for other compression algorithms (our gainwith Bzip2 only averaged 1.6%), so we attempted to�nd out how our method could be improved to yieldbetter results with Bzip2. An analysis of the inter-action between our algorithm and Bzip2 revealed tworeasons for the low gain:� The run-length-encoding algorithm used in the�rst stage of Bzip2 tends to get used very fre-quently with the �les generated by star-encoding,to replace long sequences of `*' characters byshorter sequences. Even though this decreases thesize of the input �le, it partially defeats the pur-pose of star-encoding, because it throws o� themodel of the second stage of Bzip2, so the en-coder does not get the bene�t of using very shortcodes for `*' characters.� The second stage of Bzip2 basically relies on theobservation that a character sequence in the in-put �le can be used to help predict the charac-ter preceding it. This property typically holds forthe English language (with sequences being wordsor syllables), but does not hold as well for star-encoded �les, because the sequences of `*' char-acters do not provide enough context to make areasonable prediction of the preceding character.From these observations we decided to modify ourencoding scheme as follows, called `Bzip-encoding' inthis proposal. Bzip-encoding uses the same sets L,P , Pe, Ps as star-encoding. However the way word3



encodings are formed is di�erent: Each word is en-coded by a sequence of characters of the same lengthas the word itself. Exceptions are capitalized words,which require additional encoding. The scheme usedto encode capitalization is identical to the one de-scribed in [FM96, ?], using characters from Ps. The�rst character of each word encoding is a `*' charac-ter. No other `*' characters appear in an encoding.This allows Bzip2 to strongly predict the space char-acter preceding a `*' character. For words of four ormore characters in length, the last three charactersform an encoding of the dictionary o�set of the corre-sponding word, in the following manner: entry Di[0]is encoded as `zaA'. For entries Di[j] with j > 0 thelast character cycles through [A-Z], the second-to-lastcharacter cycles through [a-z], and the third-to-lastcharacter counts downward from `z' to `a', in this or-der. This allows for 17576 word encodings for eachword length, which is su�cient for the dictionaries weused. If more word encodings are required, then thisscheme could easily be extended to four or more char-acters. For words of more than four characters, thecharacters between the initial `*' and the �nal three-character-sequence in the word encoding is �lled upwith a su�x of the string `. . . nopqrstuvw'. For in-stance, the �rst word of length 10 would be encodedas `*rstuvwzaA'. words with three or fewer charactersare treated as special cases, and use di�erent encod-ings:� Words of length three start with a `*', followedby two characters encoding the dictionary o�set.The last characters cycles through [A-Z], and thesecond-to-last character cycles through [a-z,A-Z],in this order, allowing 1352 di�erent word encod-ings.� Words of length two start with a `*', followed by acharacter that cycles through [A-Z,a-z], allowing52 di�erent word encodings.� Only one word of length one can be encoded. Itsencoding is a single `*' character.This encoding scheme provides a stronger local con-text within each word encoding, and on the borderbetween a word encoding and its delimiters, becausethere is a correlation between the type of character(`*' character, upper-case characters, lower-case char-acters with a high value, lower-case character with alow value) and the relative position of that characterwithin the word encoding. This stronger local contextis supposed to increase the ability of Bzip2 to pre-dict the preceding character for a character sequence,

and thus increase the compression ratio of Bzip2 as aback-end compression algorithm.Experimental ResultsThe results reported in this section are preliminary,but we believe that they demonstrate the signi�cantpotential of the approach. We used ten text �les andan English dictionary as listed in Table I obtained fromWorld Wide Web.1 We used an electronic version ofan English dictionary for our work. This dictionarycontained nearly 60,000 words of up to 21 letters long.For frequencies of words in English text, we referredto [HoCo92, CDR71] and used information about themost frequent 100 words. In English, the most fre-quent words are less than �ve letters long.Each of our experiments considered a di�erent com-pression algorithm augmented with our encoding ap-proach. The compression algorithms used were Unixcompress (comp), GNU zip with minimal compression(gzip -1), GNU zip with maximal compression (gzip -9)[Table 2], and arithmetic (arith) using a characterbased model, DMC, PPM[Table 3] and Bzip[table 5]methods. All compression algorithms were combinedwith our *-encoding method, with the exception ofBzip: that algorithm was combined with our Bzip-encoding method.The results of these experiments are summarizedin the following tables. It is well known that these al-gorithms beat the Hu�man code in compression per-formance, so we do not report results for Hu�mancode in this proposal. The compression is expressedas BPC (bits per character) and also as a percentageremaining with respect to the original size of the �le.Note that almost all of the encoded compressions yielduniformly better results than the unaided compres-sions. In addition to the benchmark texts we also usedone HTML document (220396 bytes) for testing: thecurrent PNG speci�cation document available fromhttp://www.w3.org/pub/WWW/TR/REC-png.html. Asummary of average performance of star-encoding isshown in Table 4. The results shown in Table 5 indi-cate that the new `Bzip' encoding algorithm improvesthe compression ratio of the standard compressionalgorithms `compress', `gzip' and `Bzip' by approxi-mately 5% to 12%, and that the encoding method issuitable for text �les as well as HTML documents.In particular our results for Bzip encoding arepromising, because the Bzip algorithm combines ex-cellent compression with low CPU time requirements,1We would like to acknowledge the individuals and organi-zations who collected these electronic versions online, includingProfessor Eugene F. Irey (University of Colorado at Boulder)and Project Gutenberg and individuals responsible for the Cal-gary corpus4



and is thus very well suited for many practical ap-plications, and is expected to be used as a standardcompression algorithm on the Internet.4.2 Image and Video CompressionIn this section, we will present in the form of ab-stracts, new results on text and image compressionalgorithms. The details of the algorithms will be pre-sented verbally at the the Workshop.Hidden Bit AlgorithmWe develop a real-time image coding system ca-pable of adapting instantaneously to the availablechannel bandwidth. The range of operational band-widths for the proposed system has a �ner calibra-tion than ordinary hierarchical vector quantization(HVQ) or wavelet based hierarchical vector quanti-zation (WHVQ) methods suggested in the literature.These properties make it very attractive for networkswith 
uctuating available bandwidth, like the inter-net. All encoder and decoder operations are strictlyconstant time per pixel, proceeding through tablelookups, and are intrinsically suitable for parallel andhardware implementation.In tree-structured vector quantization (TSVQ), thecodewords are arranged in a tree structure, and eachinput vector is successively mapped from the root nodeto the minimum distortion leaf node. This successivelypartitions and re�nes the input space, as the depth ofthe tree increases. This enables "embedded coding" tobe performed, as more accuracy is added as the pathfrom the root to the leaf is traversed, and additionalcode (or label) bits are added.Numerous tree growing and pruning algorithmshave been proposed in the literature. A simplistic de-sign is to grow a balanced binary tree one level at atime, typically using the "splitting" method, which isa variation of the generalized Lloyd algorithm (GLA).The �rst step is identical to the GLA, i.e. �nding theoptimum 0 bit code - the centroid of the training pop-ulation. This codeword is then split into two, and theGLA is run to produce a good 1-bit code. The algo-rithm now diverges slightly from the standard GLA,by splitting the 1-bit codewords by training only onthe partition of the training set corresponding to thecodeword from the previous step, instead of on theentire. This procedure is then iterated to �nd a bal-anced, binary codebook of the required depth, whichimplements a �xed-rate code.Embedding a binary tree structure in HVQ code tablesIn ordinary vector quantization, the codewords liein an unstructured codebook, and each input vector

is mapped to the nearest neighbor (in terms of Eu-clidean or similar distortion measure) codeword. Thisinduces a partition of the input space into Voronoiregions. In TSVQ, the codewords are arranged in arecursive tree structure, with successive approxima-tion mapping from the root to the leaf nodes. Thisinduces a hierarchical partitioning of the vector space.Thus, an input vector can be accurately representedby the label of the leaf node, but can also be repre-sented with less accuracy by a pre�x of this path fromthe root, in a "gracefully degradation" of the encodingaccuracy, as the path is made shorter. We will nowillus-trate our approach, which is an extension of theMakhoul-Riskin-Gray algorithm, .GrowingWe �rst start the binary tree codebook growing pro-cess by �nding the centroid of the training set vectors,say node A in Figure 1a. Our tree-structured hierar-chical table-lookup vector quantizer (TSHVQ) code-book consists of only one entry at this point. Next,we split node A into B and C, using the standard GLAprocedure outlined in [9]. At the end of the trainingstep, our binary tree and codebook appear as shown inFigure 1b. We then follow the Makhoul-Riskin-Graystrategy of greedily splitting the node with largestlambda (lambda = -Delta D/Delta R), until the leavesnumber the next power of 2, when we re-arrange thecodebook (Figure 1c). We carry on in this fashion un-til we have the required number of leaf nodes in ourTSHVQ codebook.PruningAs shown in Figure 1d), we organize the 8 "bestprunable" nodes in the bottom half of the TSHVQtable. Our de�nition of "best prunable" follows thegeneralized BFOS principle, i.e. they are the nodeswhich produce minimum lambda, while decreasing thebit-rate. With the codebook structure and secondary,tertiary, etc. indexing as shown in Figure 1c, the en-coder is able to instantaneously prune away half of thenodes in the table, in an optimal manner, simply byusing the secondary indices to index into the top half.The di�erence of our TSHVQ approach with thatof Makhoul/Riskin/Gray's algorithm is that we do notprune leaves one at a time, but rather prune awaysets of 2i leaves at once. This is because we can onlychange the operational bit-rate of the encoder by in-teger amounts of bit-rate, and we achieve this by dou-bling, halving, quartering, etc. the subsets of the avail-able codebooks to index into. The additional invest-ment of time (in the o�-line training mode) and spacein maintaining the multiple indexing in the TSHVQtables (see Figure 1c) pays o� during encoding, be-5



Name Size (bytes) Descriptionbook1 768771 Calgary Corpus book1book2 610856 Calgary Corpus book2news 377109 Calgary Corpus newspaper1 53161 Calgary Corpus paper1paper2 82199 Calgary Corpus paper2twocity 760697 A Tale of Two Citiesdracula 863326 Draculaivanhoe 1135308 Ivanhoemobydick 987597 Moby Dickfranken 427990 FrankensteinTable 1: Test corpusName compress *-compress gzip-1 *-gzip-1 gzip-9 *-gzip-9% BPC % BPC % BPC % BPC % BPC % BPCbook1 43% 3.46 38% 3.01 47% 3.80 45% 3.58 41% 3.25 37% 2.94book2 41% 3.28 37% 2.96 41% 3.26 39% 3.15 34% 2.70 31% 2.51news 48% 3.86 46% 3.69 44% 3.48 42% 3.40 38% 3.06 37% 2.93paper1 47% 3.77 42% 3.37 41% 3.25 40% 3.16 35% 2.79 32% 2.58paper2 44% 3.52 38% 3.03 43% 3.41 41% 3.27 36% 2.89 33% 2.60twocity 41% 3.28 36% 2.86 45% 3.62 42% 3.40 38% 3.05 34% 2.74dracula 42% 3.35 37% 2.99 46% 3.70 44% 3.5 39% 3.13 36% 2.87ivanhoe 42% 3.34 37% 2.94 46% 3.68 43% 3.48 39% 3.11 35% 2.82mobydick 43% 3.46 38% 3.02 47% 3.78 44% 3.55 40% 3.23 36% 2.90franken 40% 3.19 35% 2.77 46% 3.64 43% 3.42 38% 3.04 34% 2.73Table 2: Compression results for `compress' and gzip algorithmsName arith *-arith DMC *-DMC PPM *-PPM% BPC % BPC % BPC % BPC % BPC % BPCbook1 57% 4.58 44% 3.49 31% 2.48 29% 2.35 31% 2.45 30% 2.38book2 61% 4.85 48% 3.80 27% 2.19 27% 2.14 27% 2.14 27% 2.16news 66% 5.24 60% 4.77 35% 2.77 34% 2.71 33% 2.62 32% 2.58paper1 63% 5.07 52% 4.15 34% 2.73 32% 2.53 30% 2.36 30% 2.38paper2 58% 4.67 44% 3.53 32% 2.59 29% 2.35 29% 2.34 29% 2.30twocity 56% 4.51 42% 3.35 29% 2.32 28% 2.21 29% 2.31 28% 2.24dracula 55% 4.42 42% 3.39 31% 2.44 30% 2.38 30% 2.38 29% 2.35ivanhoe 57% 4.55 44% 3.53 30% 2.42 29% 2.29 30% 2.36 28% 2.27mobydick 56% 4.50 42% 3.36 32% 2.57 30% 2.41 31% 2.48 30% 2.36franken 56% 4.46 40% 3.20 30% 2.38 28% 2.22 29% 2.29 28% 2.23Table 3: Compression results for arithmetic, DMC, and PPM algorithms6



Name original BPC BPC with *-enc gaincompress 3.57 3.20 10.4%gzip -1 3.45 3.31 4.1%gzip -9 2.97 2.73 8.1%arith 4.84 3.96 18.2%DMC 2.73 2.51 8.1%PPM 2.94 2.74 7.8%Table 4: Average performance for star-encoding

Name Bzip2 -9 e-Bzip2 -9% BPC % BPCbook1 30% 2.42 29% 2.32book2 26% 2.06 25% 2.00news 31% 2.52 31% 2.45paper1 31% 2.49 29% 2.35paper2 30% 2.44 28% 2.27twocity 28% 2.26 27% 2.17dracula 29% 2.36 29% 2.30ivanhoe 29% 2.39 28% 2.23mobydick 31% 2.46 29% 2.33franken 29% 2.29 27% 2.16Table 5: Compression results for Bzip algorithm
7



Figure 1: Growing and Organizing Binary Tree Struc-tured Codebook

Figure 2: Codebook with Multiple Indexing for Tun-able Bit Ratescause we are able to instantaneously and optimally(due to BFOS principle) switch the operational bit-rate of the encoder, on the 
y, in response to 
uctu-ations in available bandwidth of the channel. So theencoder is very suitable for operating in a feed-backloop with a channel monitoring module.Encoder and Decoder operationsWe will illustrate these operations with referenceto an example, and Figure 2. Say we are encod-ingat 4 bpp, i.e. sending the 8 bit codes for length 2-vectors, after 1 level of wavelet based HVQ (WHVQ).If instead we mapped all possible incoming pairs (28x 28) to a subset of 27 of the 28 codebook vectors,then we would be using 7/2 = 3.5 bpp. We would alsonot be using (bottom) half of the available codebook.If we used a 26 subset, we would use 3 bpp, and soon. This is pos-sible, because we create multiple (i.e.secondary and tertiary in this case) indexing in the 28x 28 input table, for di�erent bit rates. This is shownin Figure 2.We are assured that the increased distortion atlower operational bit-rates will be optimal, due tothe binary tree-structured HVQ codebook design ex-plained in section 2. This makes the act of indexinginto the top half of the available codebook equiva-lent to optimally pruning away all the leaves in thesearch tree, and yet doing this implicitly, through ta-ble lookups, and in constant time.If we carry on the lookup-and-transform to the nextstage, then we get 2 bpp if we use all 28 code-bookvectors from the second level lookup table, 1.75 bppif we use a 27 sub-set, 1.5 for 26, etc. If we need abit rate of 2 or less, we should use the full codebookset of the next level, as the ultimate coding rate willonly depend on the rate of the �nal stage, and there isno point in coarse coding at the preceding levels. Thisgives us a �ner calibration of operational bit-rates thaneither the last-stage table TSHVQ, or straight HVQ.The decoder stays the same as in ordinary HVQ - it8



directly looks up the codebook vectors, and uses theseto reconstruct the encoded images.Embedded Optical Flow Based Motion Com-pensation in Finite State Hierarchical VectorQuantizationWe propose a video coding and delivery schemewhich is geared towards low bit-rate and real-timeperformance requirements. We use a �nite statewavelet-based hierarchical lookup vector quantiza-tion (FSWHVQ) scheme, which embeds the optical
ow calculations in table-lookups. This video cod-ing scheme is both fast (table-lookups) and accurate(dense motion �eld), and avoids the blocking arti-facts and poor prediction which plagues block cod-ing schemes at low bit rates. For restricted imagecompression/ transmission scenarios like teleconfer-encing, for which a good training set may be avail-able, the FSWHVQ scheme may be viewed as stor-ing as an internal representation in its lookup tables,a valid and complete model of the problem domain.To get this kind of compression, we need to squeezeout the last drops of spatial and temporal correla-tion, by using a combination of motion compensation(temporal) and block coding or vector quantization(spatial) techniques. MPEG (BMA/DCT) seemed tobe a good solution, by estimating the motion of eachimage block by a single vector. But at very low bitrates, this coarse approximation su�ers from very vis-ible and unpleasant artifacts. Therefore, we are facedwith the following design criteria for any practical lowbit-rate compression scheme: a) The motion estima-tion should be accurate. This automatically meansthat the residual errors will be small, and can be com-pactly coded; b) Rate/ distortion (R/D) should beoptimal, and ideally this should be adaptable (i.e. dy-namically tunable) according the bandwidth availabil-ity; and c) Both encoding and decoding should be fast,possible in real time, and/or realizable in VLSI. Inthis work we are motivated to satisfy the above de-sign criteria as closely as possible. To this end, wepropose the following solu-tions: a) Use optical 
owinstead of block matching, to obtain a dense and ac-curate motion �eld estimation; b) Use vector quan-tization, which uses an overall rate-distortion opti-mization scheme in the codebook design (i.e. train-ing) phase; and c) use FSHVQ (�nite-state hierarchi-cal table-lookup vector quantization), which "embeds"the optical 
ow computa-tions, by storing state infor-mation. This gives a fast encoder and decoder whichproceed through table-lookups rather than complexcomputations. The operational bit-rate can then bedynamically tuned to the available bandwidth, by us-

Figure 3: Derivation of the index of Optical Flowing successive stages of table-lookups. Optical 
ow hasbeen used in other video coding work, but not in a fastcoding scheme like table-lookups which is practical fora real-time encoder, and which can be implemented inhardware. The idea of embedding higher-level, e.g.classi�cation tasks in the HVQ frame-work was in-troduced by Chaddha and Gray. Finite state table-lookup hierarchical vector quantization (FSHVQ) wasused by Chaddha, Mehrotra and Gray for still im-age coding, using side intensities as the "state". Weextend the FSHVQ idea for image sequences, by us-ing code-words used to encode the previous frame,and previously esti-mated motion �elds as the "state".The new technique introduced here is the embeddingof optical 
ow in FSHVQ for video coding.Embedding Optical Flow in Finite State HVQWe will illustrate the method with a speci�c exam-ple (Figure 3). In normal HVQ, blocks of pixels arevector quantized (using table-lookups) by quantizing,or "merging" two vectors (at the �rst step these area pair of pixel values), alternatively, along rows andcolumns. So a 2x2 block of pixels (Figure 3) is quan-tized into one table index in two steps.First, two row-wise lookups quantize the row-wisepixel values to give two table indices, Y 0 and Y 1,followed by a column-wise second-level table lookup,which quantizes the column-wise indices into one in-dex, Z0, which represents a 2x2 code-book vector.Horn and Schunck's optical 
ow method proceeds byapply-ing spatial and temporal derivative masks, e.g.of size 2x2, at corresponding spatial locations of thecurrent and previous images. So if the quantized code-book indices of the previous frame (at the 2x2 blockquantization level) are stored, along with the motion�eld averages uav and vav as the state, then the op-tical 
ow vector at time t and at location x; y can beconveniently expressed as a function of the state attime t, st, and the previous and current images, it�1and it by the equation (u; v)t = f(st; it�1; it) Thissimply means that feeding the (2x2 level) code-book9



indices Z0t and Z0t�1 into Hs, the FSHVQ table forstate s, we can look up the index of the motion vec-tor, (u; v). The FSHVQ code books and tables are, ofcourse, populated in the training phase, by using theHorn and Schunck formulation. This embeds the op-tical 
ow computation in table-lookups, and gives anextremely fast encoder. The residual errors for eachblock can be sent using a lower bit-rate HVQ scheme(since the residual errors are usually small and ran-domly distributed), or by a lattice vector quantiza-tion (LVQ) scheme, which requires no additional train-ing. To complete the encoding, the state is updatedby storing a matrix of the local motion �eld vectors(uav; vav), and the output or reconstructed image isstored as the "previous image", it for the next frameat t + 1, as shown by the equation it = ît. This al-lows the encoder to track the decoder, and preventerror accumulation - it represents the "closed loop"of the generic FSHVQ system, as the previous image,it, and the local motion �eld averages, (uav; vav), to-gether comprise the state of this encoder.Coding ResultsWe show some experimental results of coding the"Claire" news caster sequence at 100 KB/s (sustained)after the initial frame was sent (intracoded) in Figure4. The optical 
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