Logiciels appliqués en sciences **Chapitre 2: Mathematica**

Exercices pratiques

- 1. Utiliser? pour obenir de l'information sur la fonction PolynomialGCD.
- 2. À l'aide du caractère de remplacement (ou « jocker ») *, trouver toutes les fonctions de Mathematica qui:
 - a) finissent par la chaîne de caractère Cos;
 - b) contiennent la chaîne de caractère Sin ;
 - c) commencent par la chaîne de caractère Polynomial
- 3. Évaluer les expressions suivantes :
 - a) 121 + 542
 - b) 3231 9876
 - c) -23 76
 - d) 22361 832748 387281
- 4. Approximer numériquement les expressions suivante :

 - b) $5^{1/9}$
- 5. Calculer:
 - a) $\sqrt{233}$

 - b) $\sqrt[3]{-3} = (-3)^{1/3}$ c) e^{-5} (à l'aide de la fonction Exp)
- 6. Calculer $\cos(\frac{\pi}{4})$, $\sin(\frac{\pi}{3})$, $\tan(\frac{3\pi}{4})$, $\cos(\frac{\pi}{12})$, $\cos(\frac{\pi}{5})$ et $\sin(\frac{-9\pi}{8})$
- 7. Utiliser la fonction Plot pour tracer les graphiques de sin(x), cos(x) et tan(x).
- 8. a) Factoriser le polynome $12x^2 + 27xy 84y^2$
 - b) Développer l'expression $(x + y)^2 (3x y)^3$
 - c) Écrire la somme $\frac{2}{r^2} \frac{x^2}{2}$ comme une seule fraction
- 9. a) Donner la décomposition en somme de fractions partielles de $\frac{1}{(x-3)(x-1)}$

b) Simplifier l'expression
$$\frac{x^2 - 1}{x^2 - 2x + 1}$$

- 10. Étant donnée l'expression rationnelle $\frac{x^3 + 2x^2 x 2}{x^3 + x^2 4x + 4}$
 - a) factoriser les numérateur et dénominateur ;
 - b) évaluer le numérateur en x = 2, évaluer le dénominateur en x = 3 (truc : utiliser la commande /.);
 - c) simplifier la fraction initiale;
 - d) évaluer la fraction en x = 4 et en x = -3;
 - e) décomposer la fraction en somme de fractions partielles.
- 11. Définir les fonction $f(x) = x^2$, $g(x) = \sqrt{x}$ et $h(x) = x + \sin x$.
- 12. En utilisant les fonctions définies précédemment, calculer f(2), g(4), $h(\pi/2)$ et $(g \circ f)(-2) = g(f(-2))$
- 13. En utilisant la fonction f définie plus haut
 - a) calculer $f(a-b^2)$;
 - b) calculer et développer $f(a-b^2)$;
 - c) calculer $\frac{f(x+h)-f(x)}{h}$;
 - d) calculer et simplifier $\frac{f(x+h)-f(x)}{h}$
- 14. Résoudre les équations 3x + 7 = 4, $\frac{x^2 1}{x 1} = 0$ et $x^3 + x^2 + x + 1 = 0$.
- 15. Trouver une solution de $\sin^2 x 2\sin x 3 = 0$.
- 16. Donner une approximation numérique des solutions de :
 - a) $x^4 2x^2 = 1 x$;
 - b) $1-x^2=x^3$.
- 17. Calculer $\lim_{x\to 0} \frac{\sin x}{x}$
- 18. Si $g(x) = x^3 3x^2 + x + 1$, calculer et simplifier :

 - a) $\frac{g(x+h) g(x)}{h};$ b) $\lim_{h \to 0} \frac{g(x+h) g(x)}{h}.$
- 19. Utiliser la fonction Table pour générer la liste {1,2,3,4,5,6,7,8,9,10}

- 20. Les **nombres** (ou la **suite**) **de Fibonacci** sont définis de façon récursive par la relation f(0) = 1, f(1) = 1 et f(n) = f(n-1) + f(n-2). Générer la liste des 10 premiers nombres de Fibonacci. (Suggestion : utiliser la forme $f[n_{-}] := f[n] = \dots$ pour éviter à Mathematica de réévaluer à chaque fois les valeurs f[n] déjà calculées)
- 21. Définir m comme étant la matrice 10×10 (m_{ij}) , où m_{ij} , l'élément situé dans la i^e rangée et la j^e colonne de m, est le logarithme en base 10 de $\left(\frac{i+9}{10} + \frac{j-1}{100}\right)$. Utiliser ensuite la fonction MatrixForm pour afficher m sous la forme d'une matrice.