EXTREME
PROGRAMMING

AGILE PROJECT
MANAGEMENT
ADVISORY SERVICE

WHITE PAPER
by Jim Highsmith

CUTTER CONSORTIUM
PRACTICE AREAS:

B Distributed Architecture

B Business-IT Strategies

B Business Intelligence

B Business Technology
Trends and Impacts

B Project Management

B [T Management

B Sourcing

CUTTER CONSORTIUM, 37 BROADWAY, SUITE 1, ARLINGTON, MA 02474-5552, USA;
Tel: +1 781 648 8700; Fax: +1 781 648 8707;
consortium@ecutter.com; www.cutter.com

http://www.cutter.com/consortium/
http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/consortium/advisory_dca.html
http://www.cutter.com/consortium/advisory_bit.html
http://www.cutter.com/consortium/advisory_bi.html
http://www.cutter.com/consortium/advisory_trends.html
http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/itjournal/index.html
http://www.cutter.com/consortium/advisory_sourcing.html
http://www.cutter.com/consortium/
mailto:consortium@cutter.com
http://www.cutter.com/consortium/

CUTTER CONSORTIUM

ABOUT THE CUTTER CONSORTIUM
Cutter Consortium’s mission is to help senior executives leverage technology for competitive
advantage and business success.

Cutter’s offerings are entirely unique in the research/analyst industry sector because they are
produced and provided by the top thinkers in IT today — a distinguished group of internation-
ally recognized experts committed to providing high-level, critical advice and guidance. These
experts provide all of Cutter’s written deliverables and perform all of the consulting and
training assignments.

Cutter Consortium’s products and services include: high-level advisory/research services,
online and print publications, benchmarking metrics, management and technical consulting,
and advanced training. The content is aimed at both a technical and business audience with
an emphasis on strategic processes and thinking.

An independent, privately held entity that has no allegiance or connections to any computer
vendors, Cutter has a well-earned reputation for its objectivity. Cutter’s more than 5,300
clients include CIOs, CEOs, CFOs, and senior IT managers in Fortune 500 companies and
other businesses, national and state governments, and universities around the world.

As a smaller information provider, the Consortium customizes its services to meet each
client’s individual needs and ensure them access to the experts.

FOR MORE INFORMATION

To learn more about the Cutter Consortium, call +1 800 964 5118 (toll-free in North America) or
+1 781 648 8700, send e-mail to sales@cutter.com, or visit the Cutter Consortium Web site:
www.cutter.com.

http://www.cutter.com/consortium/
http://www.cutter.com/consortium
http://www.cutter.com/consortium/index_consultants.html
http://www.cutter.com/consortium/index_consulting.html
http://www.cutter.com/consortium
http://www.cutter.com/consortium/index_consulting.html
http://www.cutter.com/consortium/index_advisory.html
http://www.cutter.com/consortium
mailto:sales@cutter.com
http://www.cutter.com/consortium

Extreme Programming

[This article orginally appeared in the February 2000 edition of
Cutter Consortium’s e-Business Application Delivery newsletter,
now titled the Agile Project Management Advisory Service.]

by Jim Highsmith

As we have explored in several
issues of eAD, the two most press-
ing issues in information technology
today are:

m How do we deliver functionali-
ty to business clients quickly?

m How do we keep up with
near-continuous change?

Change is changing. Not only does
the pace of change continue to
accelerate, but, as the September
issue of eAD pointed out, organiza-
tions are having to deal with differ-
ent types of change — disruptive
change and punctuated equilibrium.
Disruptive technologies, like personal
computers in the early 1980s, impact
an industry (in the case of PCs,
several related industries), while a
punctuated equilibrium — a massive
intervention into an ecosystem or an
economy — impacts a very large
number of species, or companies.
The Internet, which has become

the backbone for e-commerce and
e-business, has disrupted a wide
range of industries — more a punc-
tuated equilibrium than a disruption.

When whole business models are
changing, when time-to-market
becomes the mantra of companies,
when flexibility and interconnected-
ness are demanded from even the

most staid organization, it is then
that we must examine every aspect
of how business is managed, cus-
tomers are delighted, and products
are developed.

The Extreme Programming move-
ment has been a subset of the
object-oriented (OO) programming
community for several years, but
has recently attracted more atten-
tion, especially with the recent
release of Kent Beck’s new book
Extreme Programming Explained:
Embrace Change. Don'’t be put off
by the somewhat “in-your-face”
moniker of Extreme Programming
(XP to practitioners). Although
Beck doesn’t claim that practices
such as pair programming and
incremental planning originated
with XP, there are some very inter-
esting, and I think important, con-
cepts articulated by XP. There’s a
lot of talk today about change, but
XP has some pretty good ideas
about how to actually do it. Hence
the subtitle, Embrace Change.

There is a tendency, particularly by
rigorous methodologists, to dismiss
anything less ponderous than the
Capability Maturity Model (CMM)
or maybe the International
Organization for Standardization’s
standards, as hacking. The conno-
tation: hacking promotes doing

rather than thinking and therefore
results in low quality. This is an
easy way to dismiss practices that
conflict with one’s own assump-
tions about the world.

Looked at another way, XP may be
a potential piece of a puzzle I've
been writing about over the past 18
months. Turbulent times give rise
to new problems that, in turn, give
rise to new practices — new prac-
tices that often fly in the face of
conventional wisdom but survive
because they are better adapted to
the new reality. There are at

least four practices I would assign
to this category:

m XP — the focus of this issue

m Lean development — dis-
cussed in the November 1998
issue of eAD

m Crystal Light methods — men-
tioned in the November 1999
issue of eAD and further dis-
cussed in this issue

m Adaptive software develop-
ment — described in the
August 1998 issue of eAD
(then called Application
Development Strategies —
ADS)

Although there are differences in

http://www.cutter.com/consortium/consultants/jhbio.html
http://www.cutter.com/consortium/advisory_epm.html

each of these practices, there are
also similarities: they each describe
variations from the conventional
wisdom about how to approach
software development. Whereas
lean and adaptive development
practices target strategic and pro-
ject management, XP brings its dif-
fering world view to the realm of
the developer and tester.

Much of XP is derived from good
practices that have been around for
a long time. “None of the ideas in
XP are new. Most are as old as pro-
gramming,” Beck offers to readers
in the preface to his book. [might
differ with Beck in one respect:
although the practices XP uses
aren’t new, the conceptual founda-
tion and how they are melded
together greatly enhance these
“older” practices. I think there are
four critical ideas to take away from
XP (in addition to a number of
other good ideas):

m The cost of change
m Refactoring

m Collaboration

m Simplicity

But first, I discuss some XP basics:
the dozen practices that define XP.

XP — The Basics

I must admit that one thing I like
about XP’s principal figures is their
lack of pretension. XP proponents
are careful to articulate where they
think XP is appropriate and where it
is not. While practitioners like Beck
and Ron Jeffries may envision that
XP has wider applicability, they are
generally circumspect about their

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

claims. For example, both are clear
about XP’s applicability to small
(less than 10 people), co-located
teams (with which they have direct
experience); they don’t try to con-
vince people that the practices will
work for teams of 200.

The Project

The most prominent XP project
reported on to date is the Chrysler
Comprehensive Compensation sys-
tem (the C3 project) that was initiat-
ed in the mid-1990s and converted
to an XP project in 1997. Jeffries,
one of the “Three Extremoes” (with
Beck and Ward Cunningham), and I
spent several hours talking about
the C3 project and other XP issues
at the recent Miller Freeman
Software Developer conference in
Washington, DC, USA.

Originally, the C3 project was con-
ceived as an OO programming pro-
ject, specifically using Smalltalk.
Beck, a well-known Smalltalk
expert, was called in to consult on
Smalltalk performance optimi-
zation, and the project was trans-
formed into a pilot of OO (XP) prac-
tices after the original project was
deemed unreclaimable. Beck
brought in Jeffries to assist on a
more full-time basis, and Jeffries
worked with the C3 team until
spring 1999. The initial require-
ments were to handle the monthly
payroll of some 10,000 salaried
employees. The system consists of
approximately 2,000 classes and
30,000 methods and was ready
within a reasonable tolerance peri-
od of the planned schedule.

As we talked, I asked Jeffries how
success on the C3 project translated
into XP use on other Chrysler IT
projects. His grin told me all [need-

ed to know. I've been involved in
enough rapid application develop-
ment (RAD) projects for large IT
organizations over the years to
understand why success does not
consistently translate into accep-
tance. There are always at least a
hundred very good reasons why
success at RAD, or XP, or lean
development, or other out-of-the-
box approaches doesn’t translate
into wider use — but more on this
issue later.

Practices

One thing to keep in mind is that XP
practices are intended for use with
small, co-located teams. They
therefore tend toward minimalism,
at least as far as artifacts other than
code and test cases are concerned.
The presentation of XP’s practices
have both positive and negative
aspects. At one level, they sound
like rules — do this, don’t do that.
Beck explains that the practices are
more like guidelines than rules,
guidelines that are pliable depend-
ing on the situation. However,
some, like the “40-hour week,” can
come off as a little preachy. Jeffries
makes the point that the practices
also interact, counterbalance, and
reinforce each other, such that pick-
ing and choosing which to use and
which to discard can be tricky.

The planning game. XP’s planning
approach mirrors that of most itera-
tive RAD approaches to projects.
Short, three-week cycles, frequent
updates, splitting business and tech-
nical priorities, and assigning “sto-
ries” (a story defines a particular
feature requirement and is dis-
played in a simple card format) all
define XP’s approach to planning.

Extreme Programming. ©2002 by Cutter Consortium. All rights reserved. Unauthorized reproduction in any form, including photocopying, faxing,

and image scanning, is against the law.

WHITE PAPER

www.cutter.com

http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/copyrigh.htm
http://www.cutter.com/consortium/

EXTREME PROGRAMMING

Small releases. “Every release
should be as small as possible, con-
taining the most valuable business
requirements,” states Beck. This
mirrors two of Tom Gilb’s principles
of evolutionary delivery from his
book Principles of Software
Engineering Management: “All large
projects are capable of being divid-
ed into many useful partial result
steps,” and “Evolutionary steps
should be delivered on the principle
of the juiciest one next.”

Small releases provide the sense of
accomplishment that is often miss-
ing in long projects as well as more
frequent (and more relevant) feed-
back. However, a development
teamn needs to also consider the dif-
ference between “release” and
“releasable.” The cost of each
release — installation, training, con-
versions — needs to be factored
into whether or not the product pro-
duced at the end of a cycle is actu-
ally released to the end user or is
simply declared to be in

a releasable state.

Metaphor. XP’s use of the terms
“metaphor” and “story” take a little
wearing in to become comfortable.
However, both terms help make the
technology more understandable in
human terms, especially to clients.
At one level, metaphor and archi-
tecture are synonyms — they are
both intended to provide a broad
view of the project’s goal. But
architectures often get bogged
down in symbols and connections.
XP uses “metaphor” in an attempt
to define an overall coherent theme
to which both developers and busi-
ness clients can relate. The
metaphor describes the broad
sweep of the project, while stories
are used to describe individual
features.

Simple design. Simple design has
two parts. One, design for the func-
tionality that has been defined, not

©2002 CUTTER CONSORTIUM

for potential future functionality.
Two, create the best design that can
deliver that functionality. In other
words, don’t guess about the future:
create the best (simple) design you
can today. “If you believe that the
future is uncertain, and you believe
that you can cheaply change your
mind, then putting in functionality
on speculation is crazy,” writes
Beck. “Put in what you need when
you need it.”

In the early 1980s, I published an
article in Datarnation magazine
titled “Synchronizing Data with
Reality.” The gist of the article was
that data quality is a function of use,
not capture and storage.
Furthermore, I said that data that
was not systematically used would
rapidly go bad. Data quality is a
function of systematic usage, not
anticipatory design. Trying to antici-
pate what data we will need in the
future only leads us to design for
data that we will probably never
use; even the data we did guess
correctly on won’t be correct any-
way. XP’s simple design approach
mirrors the same concepts. As
described later in this article, this
doesn’t mean that no anticipatory
design ever happens; it does mean
that the economics of anticipatory
design changes dramatically.

Refactoring. If [had to pick one
thing that sets XP apart from other
approaches, it would be refactoring
— the ongoing redesign of software
to improve its responsiveness to
change. RAD approaches have
often been associated with little or
no design; XP should be thought of
as continuous design. In times of
rapid, constant change, much more
attention needs to be focused on
refactoring. See the sections
“Refactoring” and “Data
Refactoring,” below.

Testing. XP is full of interesting
twists that encourage one to think

— for example, how about “Test
and then code”? I've worked with
software companies and a few IT
organizations in which programmer
performance was measured on
lines of code delivered and testing
was measured on defects found —
neither side was motivated to
reduce the number of defects prior
to testing. XP uses two types of
testing: unit and functional.
However, the practice for unit test-
ing involves developing the test for
the feature prior to writing the code
and further states that the tests
should be automated. Once the
code is written, it is immediately
subjected to the test suite — instant
feedback.

The most active discussion group
on XP remains the Wiki exchange
(XP is a piece of the overall discus-
sion about patterns). One of the
discussions centers around a lifecy-
cle of Listen (requirements) — Test
— Code — Design. Listen closely to
customers while gathering their
requirements. Develop test cases.
Code the objects (using pair pro-
gramming). Design (or refactor) as
more objects are added to the sys-
tem. This seemingly convoluted
lifecycle begins to make sense only
in an environment in which change
dominates.

Pair programming. One of the few
software engineering practices that
enjoys near-universal acceptance
(at least in theory) and has been
well measured is software inspec-
tions (also referred to as reviews or
walkthroughs). At their best,
inspections are collaborative inter-
actions that speed learning as much
as they uncover defects. One of the
lesser-known statistics about
inspections is that although they are
very cost effective in uncovering
defects, they are even more effec-
tive at preventing defects in the first
place through the team’s ongoing

WHITE PAPER

http://www.cutter.com/copyrigh.htm

learning and incorporation of better
programming practices.

One software company client I
worked with cited an internal study
that showed that the amount of
time to isolate defects was 15 hours
per defect with testing, 2-3 hours
per defect using inspections, and 15
minutes per defect by finding the
defect before it got to the inspec-
tion. The latter figure arises

from the ongoing team learning
engendered by regular inspections.
Pair programming takes this to the
next step — rather than the incre-
mental learning using inspections,
why not continuous learning using
pair programming?

“Pair programming is a dialog
between two people trying to simul-
taneously program and understand
how to program better,” writes
Beck. Having two people sitting in
front of the same terminal (one
entering code or test cases, one
reviewing and thinking) creates a
continuous, dynamic interchange.
Research conducted by Laurie
Williams for her doctoral disserta-
tion at the University of Utah con-
firm that pair programming’s bene-
fits aren’t just wishful thinking (see
Resources and References).

Collective ownership. XP defines
collective ownership as the practice
that anyone on the project team
can change any of the code at any
time. For many programmers, and
certainly for many managers, the
prospect of communal code raises
concerns, ranging from “I don’t
want those bozos changing my
code” to “Who do I blame when
problems arise?” Collective owner-
ship provides another level to the
collaboration begun by pair pro-
gramming.

Pair programming encourages two
people to work closely together:
each drives the other a little harder

WHITE PAPER

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

to excel. Collective ownership
encourages the entire team to work
more closely together: each individ-
ual and each pair strives a little
harder to produce high-quality
designs, code, and test cases.
Granted, all this forced “together-
ness” may not work for every
project team.

Continuous integration. Daily
builds have become the norm in
many software companies — mim-
icking the published material on the
“Microsoft” process (see, for exam-
ple, Michael A. Cusumano and
Richard Selby’s Microsoft Secrets).
Whereas many companies set daily
builds as a minimum, XP practition-
ers set the daily integration as the
maximum — opting for frequent
builds every couple of hours. XP’s
feedback cycles are quick: develop
the test case, code, integrate
(build), and test.

The perils of integration defects
have been understood for many
years, but we haven’t always had
the tools and practices to put

that knowledge to good use. XP not
only reminds us of the potential for
serious integration errors, but pro-
vides a revised perspective on prac-
tices and tools.

40-hour week. Some of XP’s 12
practices are principles, while oth-
ers, such as the 40-hour practice,
sound more like rules. [agree with
XP’s sentiments here; I just don’t
think work hours define the issue. |
would prefer a statement like,
“Don’t burn out the troops,” rather
than a 40-hour rule. There are situ-
ations in which working 40 hours is
pure drudgery and others in which
the team has to be pried away from
a 60-hour work week.

Jeffries provided additional thoughts
on overtime. “What we say is that
overtime is defined as time in the
office when you don’t want to be

there. And that you should work no
more than one week of overtime.

If you go beyond that, there’s some-
thing wrong — and you're tiring out
and probably doing worse than if
you were on a normal schedule. 1
agree with you on the sentiment
about the 60-hour work week.
When we were young and eaget,
they were probably okay. It’s the
dragging weeks to watch for.”

[don’t think the number of hours
makes much difference. What
defines the difference is volun-
teered commitment. Do people
want to come to work? Do they
anticipate each day with great rel-
ish? People have to come to work,
but they perform great feats by
being committed to the project, and
commitment only arises from a
sense of purpose.

On-site customer. This practice
corresponds to one of the oldest
cries in software development —
user involvement. XP, as with every
other rapid development approach,
calls for ongoing, on-site user
involvement with the project team.

Coding standards. XP practices
are supportive of each other. For
example, if you do pair program-
ming and let anyone modify the
communal code, then coding
standards would seem to be a
necessity.

Values and Principles

On Saturday, 1 January 2000, the
Wall Street Journal (you know, the
“Monday through Friday” newspa-
per) published a special

58-page millennial edition. The
introduction to the Industry &
Economics section, titled “So Long
Supply and Demand: There’s a new
economy out there — and it looks
nothing like the old one,” was writ-
ten by Tom Petzinger. “The bottom
line: creativity is overtaking capital

www.cutter.com

http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/consortium

EXTREME PROGRAMMING

as the principal elixir of growth,”
Petzinger states.

Petzinger isn’t talking about a hand-
ful of creative geniuses, but the cre-
ativity of groups — from teams to
departments to companies. Once
we leave the realm of the single
creative genius, creativity becomes
a function of the environment and
how people interact and collabo-
rate to produce results. If your
company’s fundamental principles
point to software development as a
statistically repeatable, rigorous,
engineering process, then XP is
probably not for you. Although XP
contains certain rigorous practices,
its intent is to foster creativity and
communication.

Environments are driven by values
and principles. XP (or the other
practices mentioned in this issue)
may or may not work in your orga-
nization, but, ultimately, success
won’t depend on using 40-hour
work weeks or pair programming
— it will depend on whether or
not the values and principles of
XP align with those of your
organization.

Beck identifies four values, five
fundamental principles, and ten
secondary principles — but I'll
mention five that should provide
enough background.

Communication. So, what’s new
here? It depends on your perspec-
tive. XP focuses on building a
person-to-person, mutual under-
standing of the problem environ-
ment through minimal formal
documentation and maximum face-
to-face interaction. “Problems with
projects can invariably be traced
back to somebody not talking to
somebody else about something
important,” Beck says. XP’s prac-
tices are designed to encourage
interaction — developer to develop-
er, developer to customer.

©2002 CUTTER CONSORTIUM

Simplicity. XP asks of each team
member, “What is the simplest
thing that could possibly work?”
Make it simple today, and create an
environment in which the cost of
change tomorrow is low.

Feedback. “Optimism is an occu-
pational hazard of programming,”
says Beck. “Feedback is the treat-
ment.” Whether it’s hourly builds
or frequent functionality testing
with customers, XP embraces
change by constant feedback.
Although every approach to soft-
ware development advocates feed-
back — even the much-maligned
waterfall model — the difference is
that XP practitioners understand
that feedback is more important
than feedforward. Whether it’s fix-
ing an object that failed a test case
or refactoring a design that is resist-
ing a change, high-change environ-
ments require a much different
understanding of feedback.

Courage. Whether it’'s a CMM prac-
tice or an XP practice that defines
your discipline, discipline requires
courage. Many define courage as
doing what’s right, even when pres-
sured to do something else.
Developers often cite the pressure
to ship a buggy product and the
courage to resist. However, the
deeper issues can involve legiti-
mate differences of opinion over
what is right. Often, people don’t
lack courage — they lack convic-
tion, which puts us right back to
other values. If a team’s values
aren’t aligned, the team won’t be
convinced that some practice is
“right,” and, without conviction,
courage doesn’t seem so important.
It’s hard to work up the energy to
fight for something you don’t
believe in.

“Courage isn’t just about having the
discipline,” says Jeffries. “It is also
a resultant value. If you do the

practices that are based on com-
munication, simplicity, and feed-
back, you are given courage, the
confidence to go ahead in a light-
weight manner,” as opposed to
being weighted down by the more
cumbersome, design-heavy prac-
tices.

Quality work. Okay, all of you out
there, please raise your hand if you
advocate poor-quality work.
Whether you are a proponent of the
Rational Unified Process, CMM, or
XP, the real issues are “How do you
define quality?” and “What actions
do you think deliver high quality?”
Defining quality as “no defects” pro-
vides one perspective on the ques-
tion; Jerry Weinberg’s definition,
“Quality is value to some person,”
provides another. [get weary of
methodologists who use the “hack-
er” label to ward off the intrusion of
approaches like XP and lean devel-
opment. It seems unproductive to
return the favor. Let’s concede that
all these approaches are based on
the fundamental principle that indi-
viduals want to do a good, high-
quality job; what “quality” means
and how to achieve it — now
there’s the gist of the real debate!

Managing XP

One area in which XP (at least as
articulated in Beck’s book) falls
short is management, understand-
able for a practice oriented toward
both small project teams and pro-
gramming. As Beck puts it,
“Perhaps the most important job for
the coach is the acquisition of toys
and food.” (Coaching is one of
Beck’s components of manage-
ment strategy.)

With many programmers, their rec-
ommended management strategy
seems to be: get out of the way.
The underlying assumption?
Getting out of the way will create a

WHITE PAPER

http://www.cutter.com/copyrigh.htm

collaborative environment. Steeped
in the tradition of task-based project
management, this assumption
seems valid. However, in my expe-
rience, creating and maintaining
highly functional collaborative envi-
ronments challenges management
far beyond making up task lists and
checking off their completion.

The Cost of Change

Early on in Beck’s book, he chal-
lenges one of the oldest assump-
tions in software engineering. From
the mid-1970s, structured methods
and then more comprehensive
methodologies were sold based on
the “facts” shown in Figure 1. 1
should know; I developed, taught,
sold, and installed several of these
methodologies during the 1980s.

Beck asks us to consider that per-
haps the economics of Figure 1,
probably valid in the 1970s and
1980s, now look like Figure 2 — that
is, the cost of maintenance, or
ongoing change, flattens out rather
than escalates. Actually, whether
Figure 2 shows today’s cost profile
or not is irrelevant — we have

to make it true! If Figure 1 remains
true, then we are doomed because
of today’s pace of change.

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

The vertical axis in Figure 1 usually
depicts the cost of finding defects
late in the development cycle.
However, this assumes that all
changes are the results of a mistake
—i.e., a defect. Viewed from this
perspective, traditional methods
have concentrated on “defect pre-
vention” in early lifecycle stages.
But in today’s environment, we
can’t prevent what we don’t know
about — changes arise from itera-
tively gaining knowledge about the
application, not from a defective
process. So, although our practices
need to be geared toward prevent-
ing some defects, they must also be
geared toward reducing the cost of
continuous change. Actually, as
Alistair Cockburn points out, the
high cost of removing defects
shown by Figure 1 provides an eco-
nomic justification for practices like
pair programming.

In this issue, [want to restrict the
discussion to change at the project
or application level — decisions
about operating systems, develop-
ment language, database, middle-
ware, etc., are constraints outside
the control of the development
team. (For ideas on “architectural”
flexibility, see the June and July

1999 issues of ADS.) Let’s simplify
even further and assume, for now,
that the business and operational
requirements are known.

Our design goal is to balance the
rapid delivery of functionality while
we also create a design that can be
easily modified. Even within the
goal of rapid delivery, there remains
another balance: proceed too hur-
riedly and bugs creep in; try to
anticipate every eventuality and
time flies. However, let’s again sim-
plify our problem and assume we
have reached a reasonable balance
of design versus code and test time.

With all these simplifications, we
are left with one question: how
much anticipatory design work do
we do? Current design produces
the functionality we have already
specified. Anticipatory design builds
in extra facilities with the anticipa-
tion that future requirements will be
faster to implement. Anticipatory
design trades current time for future
time, under the assumption that a
little time now will save more time
later. But under what conditions is
that assumption true? Might it not
be faster to redesign later, when we
know exactly what the changes are,
rather than guessing now?

Figure 1 — Historical lifecycle change costs

-
SS
O c
o ®
of
55
= O
I
[
: Re2
o 0
O] 8]
b4 Q

Figure 2 — Contemporary lifecycle change costs.

Contemporary Cost
of Change

Maintenance

®
3

[

©

c C

. > 2
o ‘B £
o ® T
e Q =

Time or Lifecycle Phase

WHITE PAPER

Time or Lifecycle Phase
(Source: Adapted from Beck)

www.cutter.com

http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/consortium

EXTREME PROGRAMMING

Anticipatory
Designing

/Anticipatory

Refactoring Designing

Refactoring

Lower «—— Rate of Change — Higher

Figure 3 — Balancing design and refactoring, pre-internet.

Lower «—— Rate of Change — Higher

Figure 4 — Balancing design and refactoring today.

This is where refactoring enters the
equation. Refactoring, according to
author Martin Fowler, is “the
process of changing a software sys-
tem in such a way that it does not
alter the external behavior of the
code yet improves its internal struc-
ture.” XP proponents practice con-
tinuous, incremental refactoring as
a way to incorporate change. If
changes are continuous, then we’ll
never get an up-front design com-
pleted. Furthermore, as changes
become more unpredictable — a
great likelihood today — then much
anticipatory design likely will be
wasted.

[think the diagram in Figure 3
depicts the situation prior to the
rapid-paced change of the Internet
era. Since the rate of change (illus-
trated by the positioning of the bal-
ance point in the figure) was lower,
more anticipatory designing versus
refactoring may have been reason-
able. As Figure 4 shows, however,
as the rate of change increases, the
viability of anticipatory design loses
out to refactoring — a situation I
think defines many systems today.

In the long run, the only way to test
whether a design is flexible involves
making changes and measuring
how easy they are to implement.
One of the biggest problems with
the traditional up-front-design-then-

©2002 CUTTER CONSORTIUM

maintain strategy has been that soft-
ware systems exhibit tremendous
entropy; they degrade over time as
maintainers rush fixes, patches, and
enhancements into production. The
problem is worse today because of
the accelerated pace of change, but
current refactoring approaches
aren't the first to address the prob-
lem. Back in the “dark ages” (circa
1986), Dave Higgins wrote Data
Structured Software Maintenance, a
book that addressed the high cost
of maintenance, due in large part to
the cumulative effects of changes to
systems over time. Although
Higgins advocated a particular pro-
gram-design approach (the Warnier/
Orr Approach), one of his primary
themes was to stop the degradation
of systems over time by systemati-
cally redesigning programs during
maintenance activities.

Higgins’s approach to program
maintenance was first to develop a
pattern (although the term pattern
was not used then) for how the pro-
gram “should be” designed, then to
create a map from the “good” pat-
tern to the “spaghetti” code.
Programmmers would then use the
map to help understand the pro-
gram and, further, to revise the pro-
gram over time to look more like
the pattern. Using Higgins’s
approach, program maintenance

counteracted the natural tendency
of applications to degrade over
time. “The objective was not to
rewrite the entire application,” said
Higgins in a recent conversation,
“but to rewrite those portions for
which enhancements had been
requested.”

Although this older-style “refactor-
ing” was not widely practiced, the
ideas are the same as they are
today — the need today is just
greater. Two things enable, or
drive, increased levels of refactor-
ing: one is better languages and
tools, and the other is rapid change.

Another approach to high change
arose in the early days of RAD: the
idea of throwaway code. The idea
was that things were changing so
rapidly that we could just code
applications very quickly, then
throw them away and start over
when the time for change arose.
This turned out to be a poor long-
term strategy.

Refactoring

Refactoring is closely related to fac-
toring, or what is now referred to as
using design patterns. Design
Patterns: Elements of Reusable
Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, pro-

WHITE PAPER

http://www.cutter.com/copyrigh.htm

vides the foundational work on
design patterns. Design Patterns
serves modern-day OO program-
mers much as Larry Constantine
and Ed Yourdon’s Structural Design
served a previous generation; it pro-
vides guidelines for program struc-
tures that are more effective than
other program structures.

If Figure 4 shows the correct bal-
ance of designing versus refactoring
for environments experiencing high
rates of change, then the quality of
initial design remains extremely
important. Design patterns provide
the means for improving the quality
of initial designs by offering models
that have proven effective in the
past.

So, you might ask, why a separate
refactoring book? Can’t we just use
the design patterns in redesign?

Yes and no. As all developers (and
their managers) understand, mess-
ing with existing code can be a tick-
lish proposition. The cliché “if it
ain’t broke, don't fix it” lives on in
annals of development folklore.
However, as Fowler comments,
“The program may not be broken,
but it does hurt.” Fear of breaking
some part of the code base that’s
“working” actually hastens the

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

degradation of that code base.
However, Fowler is well aware of
the concern: “Before I do the refac-
toring, I need to figure out how to
do it safely.... I've written down the
safe steps in the catalog.” Fowler’s
book, Refactoring: Improving the
Design of Existing Code, catalogs
not only the before (poor code) and
after (better code based on pat-
terns), but also the steps required
to migrate from one to the other.
These migration steps reduce the
chances of introducing defects dur-
ing the refactoring effort.

Beck describes his “two-hat”
approach to refactoring — namely
that adding new functionality and
refactoring are two different activi-
ties. Refactoring, per se, doesn’t
change the observable behavior of
the software; it enhances the inter-
nal structure. When new function-
ality needs to be added, the first
step is often to refactor in order to
simplify the addition of new func-
tionality. This new functionality that
is proposed, in fact, should provide
the impetus to refactor.

Refactoring might be thought of as
incremental, as opposed to monu-
mental, redesign. “Without refac-
toring, the design of the program

Figure 5 — Software entropy over time.

Cost of Change

2 46 8 10 12 14
Years

WHITE PAPER

will decay,” Fowler writes. “Loss of
structure has a cumulative effect.”
Historically, our approach to main-
tenance has been “quick and dirty,”
so even in those cases where good
initial design work was done, it
degraded over time.

Figure 5 shows the impact of
neglected refactoring — at some
point, the cost of enhancements
becomes prohibitive because the
software is so shaky. At this point,
monumental redesign (or replace-
ment) becomes the only option,
and these are usually high-risk, or at
least high-cost, projects. Figure 5
also shows that while in the 1980s
software decay might have taken a
decade, the rate of change today
hastens the decay. For example,
many client-server applications hur-
riedly built in the early 1990s are
now more costly to maintain than
mainframe legacy applications built
in the 1980s.

Data Refactoring: Comments by
Ken Orr

Editor’s Note: As I mentioned above,
one thing I like about XP and refac-
toring proponents is that they are
clear about the boundary conditions
for which they consider their ideas
applicable. For example, Fowler has
an entire chapter titled “Problems
with Refactoring.” Database refac-
toring tops Fowler’s list. Fowler’s
target, as stated in the subtitle to his
book, is to improve code. So, for
data, I turn to someone who has
been thinking about data refactoring
for a long time (although not using
that specific term). The following
section on data refactoring was
written by Ken Orr.

When Jim asked me to put together
something on refactoring, I had to
ask him what that really meant. It
seemed to me to come down to a
couple of very simple ideas:

www.cutter.com

http://www.cutter.com/copyrigh.htm
http://www.cutter.com/consortium/consultants/kobio.html
http://www.cutter.com/consortium
http://www.cutter.com/consortium/consultants/kobio.html

EXTREME PROGRAMMING

1. Do what you know how to do.
2. Do it quickly.

3. When changes occur, go back
and redesign them in.

4. Gotol.

Over the years, Jim and I have
worked together on a variety of sys-
tems methodologies, all of which
were consistent with the refactoring
philosophy. Back in the 1970s, we
created a methodology built on
data structures. The idea was that
if you knew what people wanted,
you could work backward and
design a database that would give
you just the data that you needed,
and from there you could deter-
mine just what inputs you needed
to update the database so that you
could produce the output required.

Creating systems by working back-
ward from outputs to database to
inputs proved to be a very effective
and efficient means of developing
systems. This methodology was
developed at about the same time
that relational databases were com-
ing into vogue, and we could show
that our approach would always
create a well-behaved, normalized
database. More than that, however,
was the idea that approaching sys-
termns this way created minimal sys-
tems. In fact, one of our customers
actually used this methodology to
rebuild a system that was already in
place. The customer started with
the outputs and worked backward
to design a minimal database with
minimal input requirements.

The new system had only about
one-third the data elements of the
system it was replacing. This was a
major breakthrough. These devel-
opers came to understand that cre-
ating minimal systems had enor-
mous advantages: they were much
smaller and therefore much faster

©2002 CUTTER CONSORTIUM

to implement, and they were also
easier to understand and change,
since everything had a purpose.

Still, building minimal systems goes
against the grain of many analysts
and programmers, who pride them-
selves on thinking ahead and antici-
pating future needs, no matter how
remote. [think this attitude stems
from the difficulty that program-
mers have had with maintenance.
Maintaining large systems has been
so difficult and fraught with prob-
lems that many analysts and pro-
grammers would rather spend
enormous effort at the front end of
the systems development cycle, so
they don’t have to maintain the sys-
temn ever again. But as history
shows, this approach of guessing
about the future never works out.
No matter how clever we are in
thinking ahead, some new, unantic-
ipated requirement comes up to
bite us. (How many people includ-
ed Internet-based e-business as one
of their top requirements in systems
they were building 10 years ago?)

Ultimately, one of the reasons that
maintenance is so difficult revolves
around the problem of changing the
database design. In most develop-
ers’ eyes, once you design a data-
base and start to program against it,
it is almost impossible to change
that database design. In a way, the
database design is something like
the foundation of the system: once
you have poured concrete for the
foundation, there is almost no way
you can go back and change it. As
it turns out, major changes to data-
bases in large systems happen very
infrequently, only when they are
unavoidable. People simply do not
think about redesigning a database
as a normal part of systems mainte-
nance, and, as a consequence,
major changes are often unbeliev-
ably difficult.

Jim and [had never been persuaded
by the argument that the database
design could never be changed
once installed. We had the idea
that if you wanted to have a mini-
mal system, then it was necessary
to take changes or new require-
ments to the system and repeat the
basic system cycle over again, rein-
tegrating these new requirements
with the original requirements to
create a new system. You could
say that what we were doing was
data refactoring, although we never
called it that.

Enter Data Refactoring

The advantages of this approach
turned out to be significant. For
one thing, there was no major dif-
ference between development of a
new system and the maintenance
or major modification of an existing
one. This meant that training and
project management could be sim-
plified considerably. It also meant
that our systems tended not to
degrade over time, since we “built
in” changes rather than “adding
them on” to the existing system.

Over a period of years, we built a
methodology (Data Structured
Systems Development or Warnier/
Orr) and trained thousands of
systemns analysts and programmers.
The process that we developed was
largely manual, although we
thought that if we built a detailed-
enough methodology, it should be
possible to automate large pieces
of that methodology in CASE tools.

Automating Data Refactoring

To make the story short, a group of
systems developers in South
America finally accomplished the
automation of our data refactoring
approach in the late 1980s. A com-
pany led by Breogan Gonda and
Nicolas Jodal created a tool called

WHITE PAPER

http://www.cutter.com/copyrigh.htm

GeneXus! that accomplished what
we had conceived in the 1970s.
They created an approach in which
you could enter data structures for
input screens; with those data
structures, GeneXus automatically
designed a normalized database
and generated the code to navigate,
update, and report against that
database.

But that was the easy part. They
designed their tool in such a way
that when requirements changed or
users came up with something new
or different, they could restate their
requirements, rerun (recompile),
and GeneXus would redesign the
database, convert the previous
database automatically to the new
design, and then regenerate just
those programs that were affected
by the changes in the database
design. They created a closed-loop
refactoring cycle based on data
requirements.

GeneXus showed us what was really
possible using a refactoring frame-
work. For the first time in my experi-
ence, developers were freed from
having to worry about future
requirements. It allowed them to
define just what they knew and

then rapidly build a system that did
just what they had defined. Then,
when (not if) the requirements
changed, they could simply reenter
those changes, recompile the sys-
termn, and they had a new, complete-
ly integrated, minimal system that
incorporated the new requirements.

What Does All This Mean?

Refactoring is becoming something
of a buzzword. And like all buzz-
words, there is some good news
and some bad news. The good

'Gonda and Jodal created a company
called ARTech to market the GeneXus
product. It currently has more than 3,000
customers worldwide and is marketed in
the US by GeneXus, Inc.

WHITE PAPER

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

news is that, when implemented
correctly, refactoring makes it possi-
ble for us to build very robust sys-
tems very rapidly. The bad news is
that we have to rethink how we go
about developing systems. Many of
our most cherished project man-
agement and development strate-
gies need to be rethought. We
have to become very conscious of
interactive, incremental design. We
have to be much more willing to
prototype our way to success and
to use tools that will do complex
parts of the systems development
process (database design and code
generation) for us.

In the 1980s, CASE was a technology
that was somehow going to revolu-
tionize programming. In the 1990s,
objects and OO development were
going to do the same. Neither of
these technologies lived up to their
early expectations. But today, tools
like GeneXus really do many of the
things that the system gurus of the
1980s anticipated. It is possible,
currently, to take a set of require-
ments, automatically design a data-
base from those requirements, gen-
erate an operational database from
among the number of commercially
available relational databases
(Oracle, DB2, Informix, MS SQL
Server, and Access), and generate
code (prototype and production)
that will navigate, update, and report
against those databases in a variety
of different languages (COBOL, RPG,
C, C++, and Java). Moreover, it
will do this at very high speed.

This new approach to systems
development allows us to spend
much more time with users, explor-
ing their requirements and giving
them user interface choices that
were never possible when we were
building things at arm’s length. But
not everybody appreciates this new
world. For one thing, it takes a
great deal of the mystery out of the

process. For another, it puts much
more stress on rapid development.

When people tell you that building
simple, minimal systems is out of
date in this Internet age, tell them
that the Internet is all about speed
and service. Tell them that refactor-
ing is not just the best way to build
the kind of systems that we need for
the 21st century, it is the only way.

CRYSTAL LIGHT METHODS:
COMMENTS
BY ALISTAIR COCKBURN

Editor’s note: In the early 1990s,
Alistair Cockburn was hired by the
IBM Consulting Group to construct
and document a methodology for
OO development. IBM had no pref-
erences as to what the answer
might look like, just that it work.
Cockburn’s approach to the assign-
ment was to interview as many
project tearmn members as possible,
writing down whatever the teams
said was important to their success
(or failure). The results were sur-
prising. The remainder of this sec-
tion was written by Cockburn and is
based on his “in-process” book on
minimal methodologies.

In the IBM study, team after suc-
cessful team “apologized” for not
following a formal process, for not
using a high-tech CASE tool, for
“merely” sitting close to each other
and discussing as they went.
Meanwhile, a number of failing
teams puzzled over why they failed
despite using a formal process —
maybe they hadn’t followed it well
enough? I finally started encounter-
ing teams who asserted that they
succeeded exactly because they
did not get caught up in fancy
processes and deliverables, but
instead sat close together so they
could talk easily and delivered test-
ed software frequently.

www.cutter.com

http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/consortium/consultants/cockburna.html
http://www.cutter.com/consortium/consultants/cockburna.html
http://www.cutter.com/consortium

EXTREME PROGRAMMING

These results have been consistent,
from 1991 to 1999, from Hong Kong
to the Americas, Norway, and South
Africa, in COBOL, Smalltalk, Java,
Visual Basic, Sapiens, and Synon.
The shortest statement of the
results are:

To the extent you can replace
written documentation with
face-to-face interactions, you
can reduce reliance on written
work products and improve the
likelihood of delivering the
system.

The more frequently you can
deliver running, tested slices of
the system, the more you can
reduce reliance on written
“promissory” notes and improve
the likelihood of delivering the
system.

People are communicating beings.
Even introverted programmers do
better with informal, face-to-face
communication than with paper
documents. From a cost and

time perspective, writing takes
longer and is less communicative
than discussing at the whiteboard.

Written, reviewed requirements
and design documents are “promis-
es” for what will be built, serving as
timed progress markers. There are
times when creating them is good.
However, a more accurate timed
progress marker is running tested

It isn’t quite so simple. Another
result of all those project interviews
was that: different projects have
different needs. Terribly obvious,
except (somehow) to methodolo-
gists. Sure, if your project only
needs 3 to 6 people, just put them
into a room together. But if you
have 45 or 100 people, that won’t
work. If you have to pass Food &
Drug Administration process scrutiny,
you can’t get away with this. If you
are going to shoot me to Mars in a
rocket, I'll ask you not to try it. We
must remember factors such as
teamn size and demands on the
project, such as:

m As the number of people
involved grows, so does the
need to coordinate communi-
cations.

m As the potential for damage
increases, the need for public
scrutiny increases, and the tol-
erance for personal stylistic
variations decreases.

m Some projects depend on
time-to-market and can toler-
ate defects (Web browsers
being an example); other pro-
jects aim for traceability or
legal liability protection.

The result of collecting those

factors is shown in Figure 6. The
figure shows three factors that
influence the selection of method-
ology: communications load (as
given by staff size), system
criticality, and project priorities.

Locate the segment of the X axis
for the staff size (typically just

the development team). For a
distributed development project,
move right one box to account

for the loss of face-to-face commu-
nications.

On the Y axis, identify the damage
effect of the system: loss of com-
fort, loss of “discretionary” monies,
loss of “essential” monies (e.g.,
going bankrupt), or loss of life.

The different planes behind the
top layer reflect the different possi-
ble project priorities, whether it is
time to market at all costs (such as
in the first layer), productivity and
tolerance (the hidden second
layer), or legal liability (the hidden
third layer). The box in the grid
indicates the class of projects

(for example, C6) with similar
communications load and safety
needs and can be used to select

a methodology.

Figure 6 — The family of Crystal methods.

; I [[[[l [

code. It is more accurate because [Priorized for Legal Liabilty | |
IF Is not a tlmed_ promise, itis a : rPrioritized for Productivity and Tolerance |
timed accomplishment. .,6' Life im

, - 2 |
Recently, a bank’s IT group decided =g L) L6 |L20 |L40 |L100 |L200 |L500 |L1000
to take the above results at face L3 Essential im
value. They began a small project by 5 d money i
simply putting three people into the g3 (E) E6 |E20 |E40 |E100 |E200 [ES00 |E1000] | | |
same room and more or less leaving % 3 Discretionary N
them alone. Surprisingly (to them), 28— MY |ps |p20 |p40 |D100 |D200 |D500 |D1000(]
the team delivered the system in a ‘© i
fine, timely manner. The bank man- a Comfort i
agement team was a bit bemused. (C) C6 C20 C40 C100 |C200 |C500 |C1000

1-6 720 21-40 41-100 101-200 201-500 501-1,000

Surely it can’t be this simple?
Number of people involved +20%

©2002 CUTTER CONSORTIUM WHITE PAPER

http://www.cutter.com/consortium/advisory_epm.html

The grid characterizes projects fairly
objectively, useful for choosing a
methodology. | have used it myself
to change methodologies on a pro-
ject as it shifted in size and com-
plexity. There are, of course, many
other factors, but these three deter-
mine methodology selection quite
well.

Suppose it is time to choose a
methodology for the project. To
benefit from the project interviews
mentioned earlier, create the
lightest methodology you can even
imagine working for the cell in the
grid, one in which person-to-person
communication is enhanced as
much as possible, and running test-
ed code is the basic timing marker.
The result is a light, habitable
(meaning rather pleasant, as
opposed to oppressive), effective
methodology. Assign this method-
ology to C6 on the grid.

Repeating this for all the boxes pro-
duces a family of lightweight meth-
ods, related by their reliance on
people, communication, and fre-
quent delivery of running code. 1
call this family the Crystal Light
family of methodologies. The fami-
ly is segmented into vertical stripes
by color (not shown in figure): The
methodology for 2-6 person projects
is Crystal Clear, for 6-20 person pro-
jects is Crystal Yellow, for 20-40 per-
son projects is Crystal Orange,

then Red, Magenta, Blue, etc.

Shifts in the vertical axis can be
thought of as “hardening” of the
methodology. A life-critical 2-6-per-
son project would use “hardened”
Crystal Clear, and so on. What sur-
prises me is that the project inter-
views are showing rather little dif-
ference in the hardness require-
ment, up to life-critical projects.

Crystal Clear is documented in a
forthcoming book, currently in draft
form on the Web. Crystal Orange

WHITE PAPER

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

is outlined in the methodology chap-
ter of Surviving Object-Oriented
Projects (see Editor’s note below).

Having worked with the Crystal
Light methods for several years
now, I found a few more surprises.

The first surprise is just how little
process and control a team actually
needs to thrive (this is thrive, not
merely survive). It seems that most
people are interested in being good
citizens and in producing a quality
product, and they use their native
cognitive and communications abil-
ities to accomplish this. This
matches Jim’s conclusions about
adaptive software development
(see Resources and References).
You need one notch less control
than you expect, and less is better
when it comes to delivering quickly.

More specifically, when Jim and |
traded notes on project manage-
ment, we found we had both
observed a critical success element
of project management: that team
members understand and commu-
nicate their work dependencies.
They can do this in lots of simple,
low-tech, low-overhead ways. It

is often not necessary to introduce
tool-intensive work products to
manage it.

Oh, but it is necessary to introduce
two more things into the project:
trust and communication.

A project that is short on trust is in
trouble in more substantial ways
than just the weight of the method-
ology. To the extent that you can
enhance trust and communication,
you can reap the benefits of Crystal
Clear, XP, and the other lightweight
methods.

The second surprise with defining
the Crystal Light methods was XP. |
had designed Crystal Clear to be
the least bureaucratic methodology
[could imagine. Then XP showed

up in the same place on the grid
and made Clear look heavy! What
was going on?

It turns out that Beck had found
another knob to twist on the
methodology control panel: disci-
pline. To the extent that a team can
increase its internal discipline and
consistency of action, it can lighten
its methodology even more. The
Crystal Light family is predicated on
allowing developers the maximum
individual preference. XP is
predicated on having everyone fol-
low tight, disciplined practices:

m Everyone follows a tight
coding standard.

m The team forms a consensus
on what is “better” code, so
that changes converge and
don’t just bounce around.

m Unit tests exist for all func-
tions, and they always pass
at 100%.

m All production code is written
by two people working
together.

m Tested function is delivered
frequently, in the two- to four-
week range.

In other words, Crystal Clear illus-

trates and XP magnifies the core

principle of light methods:

Intermediate work products can
be reduced and project delivery
enhanced, to the extent that
tearn communications are
improved and frequency of
delivery increased.

XP and Crystal Clear are related to
each other in these ways:

m XP pursues greater productivi-
ty through increased disci-
pline, but it is harder for a
team to follow.

www.cutter.com

http://www.cutter.com/consortium
http://www.cutter.com/consortium/advisory_epm.html

EXTREME PROGRAMMING

m Crystal Clear permits greater
individuality within the team
and more relaxed work habits
in exchange for some loss in
productivity.

m Crystal Clear may be easier for
a team to adopt, but XP pro-
duces better results if the
team can follow it.

m A team can start with Crystal
Clear and move itself to XP. A
team that falls off XP can back
up to Crystal Clear.

Although there are differences in

Crystal Clear and XP, the fundamen-

tal values are consistent — simplici-

ty, communications, and minimal
formality.

Editor’s note: For more information
on the Crystal Clear methodology,
see Alistair Cockburn’s Web site,
listed in the References and
Resources section. For more infor-
mation on Crystal Orange, it is cov-
ered in the book Surviving Object-
Oriented Projects, also listed in the
References and Resources section.

CONCLUSIONS: GOING TO
EXTREMES

Orr and Cockburn each describe
their approaches and experience
with lighter methodologies. But
earlier, in describing Chrysler’s C3
project, I alluded to the difficulty in
extending the use of approaches
like XP or even RAD. In every sur-
vey we have done of eAD sub-
scribers, and every survey conduct-
ed of software organizations in gen-
eral, respondents rate reducing
delivery time as a critical initiative.
But it is not just initial delivery that
is critical. Although Amazon.com
may have garnered an advantage
by its early entry in the online book-
store market, it has maintained
leadership by continuous adapta-

©2002 CUTTER CONSORTIUM

tion to market conditions — which
means continuous changes to soft-
ware.

Deliver quickly. Change quickly.
Change often. These three driving
forces, in addition to better soft-
ware tools, compel us to rethink
traditional software engineering
practices — not abandon the prac-
tices, but rethink them. XP, for
example, doesn’t ask us to abandon
good software engineering prac-
tices. It does, however, ask us to
consider closely the absolute mini-
mum set of practices that enable a
small, co-located team to function
effectively in today’s software deliv-
ery environment.

Cockburn made the observation
that implementation of XP (at least
as Beck and Jeffries define it)
requires three key environmental
features: inexpensive inter-face
changes, close communications,
and automated regression testing.
Rather than asking “How do |
reduce the cost of change?” XP, in
effect, postulates a low-change cost
environment and then says, “This is
how we will work.” For example,
rather than experience the delays of
a traditional relational database
environment (and dealing with
multiple outside groups), the C3
project used GemStone, an OO
database.

Some might argue that this
approach is cheating, but that is the
point. For example, Southwest
Airlines created a powerhouse

by reducing costs — using a single
type of aircraft (Boeing 737s). If tur-
bulence and change are the norm,
then perhaps the right question
may be: how do we create an
environment in which the cost (and
time) of change is minimized?
Southwest got to expand without an
inventory of “legacy” airplanes, so
its answer might be different than

American Airline’s answer, but the
question remains an important one.

There are five key ideas to take
away from this discussion of XP
and light methods:

m For projects that must be man-
aged in high-speed, high-
change environments, we
need to reexamine software
development practices and
the assumptions behind them.

m Practices such as refactoring,
simplicity, and collaboration
(pair programming, metaphor,
collective ownership) prompt
us to think in new ways.

m We need to rethink both how
to reduce the cost of change
in our existing environments
and how to create new envi-
ronments that minimize the
cost of change.

m In times of high change, the
ability to refactor code, data,
and whole applications
becomes a critical skill.

m Matching methods to the pro-
ject, relying on people first and
documentation later, and min-
imizing formality are methods
geared to change and speed.

EDITOR’S MUSINGS

Extreme rules! In the middle of
writing this issue, [received the 20
December issue of BusinessWeek
magazine, which contains the cover
story, “Xtreme Retailing,” about
“brick” stores fighting back against
their “click” cousins. If we can
have extreme retailing, why not
Extreme Programming?

Refactoring, design patterns, com-
prehensive unit testing, pair pro-
gramming — these are not the tools
of hackers. These are the tools of

WHITE PAPER

http://www.cutter.com/copyrigh.htm

developers who are exploring new
ways to meet the difficult goals of
rapid product delivery, low defect
levels, and flexibility. Writing about
quality, Beck says, “The only possi-
ble values are ‘excellent’ and
‘insanely excellent,” depending on
whether lives are at stake or not”
and “runs the tests until they pass
(100% correct).” You might accuse
XP practitioners of being delusional,
but not of being poor-quality-orient-
ed hackers.

To traditional methodology propo-
nents, reducing time-to-market is
considered the enemy of quality.
However, I've seen some very slow
development efforts produce some
very poor-quality software, just as
['ve seen speedy efforts produce
poor-quality software. Although
there is obviously some relationship
between time and quality, [think

it is a much more complicated
relationship than we would like

to think.

Traditional methodologies were
developed to build software in envi-
ronments characterized by low to

WHITE PAPER

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

moderate levels of change and rea-
sonably predictable desired out-
comes. However, the business
world is no longer very predictable,
and software requirements change
at rates that swamp traditional
methods. “The bureaucracy and
inflexibility of organizations like the
Software Engineering Institute and
practices such as CMM are making
them less and less relevant to
today’s software development
issues,” remarks Bob Charette, who
originated the practices of lean
development for software.

As Beck points out in the introduc-
tion to his book, the individual prac-
tices of XP are drawn from well-
known, well-tested, traditional prac-
tices. The principles driving the use
of these practices, along with the
integrative nature of using a specific
minimal set of practices, make XP a
novel solution to modern software
development problems.

But [must end with a cautionary
note. None of these new practices
has much history. Their successes
are anecdotal, rather than studied

and measured. Nevertheless, |
firmly believe that our turbulent e-
business economy requires us to
revisit how we develop and man-
age software delivery. While new,
these approaches offer alternatives
well worth considering.

In the coming year, we will no
doubt see more in print on XP.
Beck, Jeffries, Fowler, and
Cunningham are working in various
combinations with others to publish
additional books on XP, so addition-
al information on practices, man-
agement philosophy, and project
examples will be available.

www.cutter.com

http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/consortium

EXTREME PROGRAMMING ﬂ

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
Cockburn, Alistair. Surviving Object-Oriented Projects. Addison-Wesley, 1998.

Cusumano, Michael A. and Richard Selby. Microsoft Secrets. Free Press, 1995.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

Gilb, Tom. Principles of Software Engineering Management. Addison-Wesley, 1988.
Higgins, David. Data Structured Sofiware Maintenance. Dorset House Publishing, 1986.

Yourdon, Edward and Larry L. Constantine. Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice Hall, 1986.

Adaptive software development. See the article in the August 1998 Application Development Strategy
(now eAD), “Managing Complexity.”

ARTech. Montevideo, Uruguay. Web site: www.artech.com.uy. Developers of GeneXus.
Crystal Clear method. Web site: http://members.aol.com/humansandt/crystal/clear.
Alistair Cockburn. Web site: http://members.aol.com/acockburn.

Bob Charette. Lean Development. ITABHI Corporation, 11609 Stonewall Jackson Drive, Spotsylvania, VA
22553, USA. E-mail: charette@erols.com.

Ward Cunningham’s Extreme Programming Roadmap. Web site: http://c2.com/cgi/
wiki?ExtremeProgrammingRoadmap.

eXtreme Programming and Flexible Processes in Software Engineering — XP2000 Conference. 21-23 June
2000, Cagliari, Sardinia, Italy. Web site: http://numa.sern.enel.ucalgary.ca/extreme.

Martin Fowler. Web site: http://ourworld.compuserve.com/homepages/martin_fowler/.
Ron Jeffries. E-mail: ronjeffries@acm.org. Web site: www.XProgramming.com.
Lean Development. See the November 1998 ADS article “Time is of the Essence.”
Object Mentor, Green Oaks, IL, USA. Web site: www.objectmentor.com/.

Ken Orr, Ken Orr Institute, Topeka, KS, USA. Web site: www.kenorrinst.com.

Laurie Williams. Web site: www.cs.utah.edu/~Iwilliam.

©2002 CUTTER CONSORTIUM WHITE PAPER

http://www.cutter.com/consortium/project/fulltext/articles/1998/08/index.html
http://www.artech.com.uy
http://members.aol.com/humansandt/crystal/clear
http://members.aol.com/acockburn
charette@erols.com
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://numa.sern.enel.ucalgary.ca/extreme
http://ourworld.compuserve.com/homepages/martin_fowler/
http://www.XProgramming.com
http://www.cutter.com/consortium/project/fulltext/articles/1998/11/index.html
http://www.objectmentor.com
http://www.kenorrinst.com
http://www.cs.utah.edu/~lwilliam
http://www.cutter.com/consortium/copyrigh.htm

CUTTER CONSORTIUM

—0 Agile Project Management

©000 00

Advisory Service

Today’s projects require a new perspective. Instead of best
practices, you’ve got to consider the next practices. The Agile
Project Management Advisory Service is designed to help you
implement a balance of practices that support innovation,
discipline, and adaptability. You’ll discover which of the major
Agile Methodologies are right for your organization, and you’ll get
a platform on which you can begin to create project management

methodologies that support your enterprise.

=0 As a client, you will receive:

® Monthly Executive Reports and Summaries — providing
strategic advice from today’s project management experts

project data

=0 Topics Covered in the Executive
Reporits and Updates include:

interface design, database design, and software design
® Best strategies for executing second-generation e-projects

® How to remain agile while using rigorous methods

® Proven ways to improve organizational decisionmaking
® Performing risk assessments using object-oriented metrics

on investment

' For More Information:

About Cutter Consortium:

Web site: www.cutter.com/consortium/

® Twice-monthly Executive Updates — with analysis of exclusive

® Weekly E-Mail Advisors by Practice Director Jim Highsmith

® The effects of Agile Methodologies on system architecture, user

® Trends in length, team size, and project type for agile projects

® Successful strategies for managing distributed software teams
® What project managers need to know to leverage requirements
® Optimizing software inspection practices to maximize the return

To learn more about Cutter Consortium’s Agile Project Management Advisory Service, contact David Gijsbers
by phone at +1 781 641 5104, by fax at +1 781 648 1950, or send e-mail to dgijsbers@cutter.com.

Cutter Consortium offers high-level advisory services, on-site assessments, consulting, and training to help
organizations forge solutions to the IT challenges they face. The Consortium is dedicated to providing completely
objective information and to customizing its services to meet each client’s needs.

Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA 02474, USA
Phone: +1 781 648 8700; Fax: +1 781 648 1950

Senior Consultants

Cutter Consortium has assembled the
world’s preeminent IT consultants —

a distinguished group of internationally
recognized experts committed to delivering
top-level, critical, objective advice.

Each Consortium practice area features
a team of Senior Consultants whose
credentials are unmatched by any other
service provider.

The Senior Consultants who write for

the Agile Project Management Advisory
Service — and are available for inhouse
workshops and custom consulting
engagements — include:

e Jim Highsmith, Director
e Scott W. Ambler

e Sam Bayer

e E.M. Bennatan

e Tom Bragg

e Robert N. Charette
e Alistair Cockburn

e Doug DecCarlo

e Tom DeMarco

e Jan Hayes

e Ron Jeffries

e Brian Lawrence

e Tim Lister

e Michael C. Mah

e Lynne Nix

e Ken Orr

e Chris Pickering

e Roger Pressman

e Ram Reddy

e James Robertson

e Suzanne Robertson
e Alexandre Rodrigues
e Johanna Rothman
e Lou Russell

e Rob Thomsett

e Colin Tully

e Richard Zultner

9 Cutter Consortium: Helping Organizations Leverage IT for Competitive Advantage and Business Success

http://www.cutter.com/consortium/advisory_epm.html
http://www.cutter.com/consortium/freestuff/apmr0201.html
http://www.cutter.com/consortium/freestuff/epmu0119.html
http://www.cutter.com/consortium/freestuff/apm020103.html
http://www.cutter.com/consortium/consultants/jhbio.html
http://www.cutter.com/consortium/project/consultants.html
http://www.cutter.com/consortium/advisory_epm.html
mailto:dgijsbers@cutter.com
http://www.cutter.com/consortium/
http://www.cutter.com/consortium/

ACCESS
TO THE

EXPERTS

TRY OUR E-MAIL
ADVISORS —

FREE!

Sign up today and
get a FREE trial

subscription to any of

our E-Mail Advisors

¢ Agile Project
Management

¢ Business
Intelligence

¢ Business-IT
Strategies

¢ Business
Technology

Trends & Impacts

¢ Sourcing

¢ Distributed
Enterprise
Architecture

¢ The Cutter Edge

Register at our
Web site:

www. cutter.com,/consortium/

CUTTER CONSORTIUM
www.cutter.com/consortium/

MAXIMIZE YOUR IT BENEFITS

Maximizing the business value of IT continues to
rank at the top of CIO and CEO priorities.

As an IT professional your goal is to provide
cost-effective information technology that is
perfectly consistent with the strategic, tactical,
and operational business objectives of your
enterprise.

It needn’t be a pipe dream.

Chances are, your company is spending an enormous amount
of effort and money on IT. And chances are, management
guestions the business value of that investment.

Cutter Consortium provides a variety of products and services
that will help you optimize your IT investments, including:

Business Intelligence

& Business-IT Strategies

Business Technology Trends & Impacts

o Component Development Strategies

o Cutter Benchmark Review

o Cutter IT Journal and CIT E-Mail Advisor
o Distributed Enterprise Architecture

o Agile Project Management

+ Sourcing

+ Consulting, Evaluations, and Assessments
¢ In-house Training and Workshops

o Custom Benchmarking and Research Reports
Online Resource Centers

For information about any of these services, or to set up a demonstration
for your company, contact us by phone, fax, or e-mail:

Tel: +1 781 648 8700 or +1 800 964 5118
Fax: +1 781 648 1950 or +1 800 888 1816
E-mail: sales@cutter.com

37 BROADWAY, SUITE 1, ARLINGTON, MA 02474-5552
+1 781 641 5118; FAX: +1 781 648 8707; consortium@cutter.com

http://www.cutter.com/consortium/project/email.html
http://www.cutter.com/consortium/bia/email.html
http://www.cutter.com/consortium/alignment/bitemail.html
http://www.cutter.com/consortium/trends/email.html
http://www.cutter.com/consortium/architecture/archmail.html
http://www.cutter.com/consortium/research/email.html
http://www.cutter.com/consortium/
mailto:sales@cutter.com
mailto:consortium@cutter.com
http://www.cutter.com/consortium/index_bi.html
http://www.cutter.com/consortium/index_bit.html
http://www.cutter.com/consortium/index_trends.html
http://www.cutter.com/consortium/index_dca.html
http://www.cutter.com/consortium/index_ebusiness.html
http://www.cutter.com/consortium/index_sourcing.html
http://www.cutter.com/consortium/index_proj_mgmnt.html
http://www.cutter.com/consortium/index_measure.html
http://www.cutter.com/cds/index.html
http://www.cutter.com/consortium/index_consulting.html
http://www.cutter.com/consortium/index_training.html
http://www.cutter.com/itgroup/reports/index.html
http://www.cutter.com/consortium/index_online.html

