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The renovation of a building involves not just the fulfilment of functional requirements, but also consid-
erations such as energy consumption, investment costs, environmental impact and wellbeing. As things
stand, new design methods and tools are needed, and the aim of the research presented in this article was
to develop a multicriteria tool, MultiOpt, for the optimization of renovation operations, with an emphasis
on building envelopes, heating and cooling loads and control strategies. MultiOpt is based on existing
assessment software and methods: it uses a genetic algorithm (NSGA-II) coupled to TRNSYS, and eco-
nomic and environmental databases. This article illustrates its utilization in the renovation of a school
in the southern French city of Nice which was representative of France’s building stock. The study started
with the monocriterion optimization of energy consumption, cost, thermal comfort, and life-cycle envi-
ronmental impact. It then moved onto multicriteria optimizations. The monocriterion analyses focussed
on the building’s characteristics and performance; the multicriteria analyses were concerned with the
interactions between the different objectives, and with identifying their convergences and divergences.
The results demonstrated that MultiOpt can be used to compare different combinations of options and
constraints, thus constituting a basis for operational decision-making.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The constraints inherent in renovating a building may also pro-
vide incentives to look at ways of saving energy and limiting the
life-cycle environmental impact of building materials by ‘‘going
green”.

Software exists for assessing buildings in terms of energy
consumption (TRNSYS, Energy Plus, DOE2.1E), natural and artificial
lighting systems [1] and acoustics [2]. There are also software and
databases that can be used to assess the life-cycle environmental
impact of building materials [3,4]. It will be noted that all these
tools are function-specific.

It is easy to classify buildings on the basis of, say, cost alone, but
less so if one wants to look simultaneously at two or more param-
eters, such as cost and energy consumption [5], or energy consump-
tion and visual comfort [6]. In this case one needs multicriteria
methods that can be applied to particular types of equipment
[7,8] or buildings [9]. Studies have been done on monocriterion
and multicriteria methods coupled with simplified, and more
detailed, assessment tools.
ll rights reserved.

Centre for Building, Marne la
88350.
urable.gouv.fr (F.P. Chantrelle).
This article traces the development of MultiOpt, a tool for the
multicriteria optimization of building renovation operations, based
on existing optimization methods and assessment software. To be-
gin with, currently-used methods are discussed. The appropriate
features of a multicriteria optimization system are then presented,
along with the development of MultiOpt. Finally, there is a case
study that illustrates its implementation.
2. Existing studies on the optimization of buildings

2.1. The optimization of design elements

The abundant literature on the optimization of buildings may be
classified according to the characteristics optimized. HVAC
systems, for example, have been extensively studied. Wright et al.
[10] investigated the design of a single-zone ‘‘all outside air” HVAC
system. Chow et al. [7] carried out a detailed optimization of an
absorption chiller system, and Kumar et al. [11] assessed and
optimized the heating and cooling potential of an earth-to-air heat
exchange system.

Research has also been done on optimizing specific characteris-
tics of buildings, e.g. form [9,12], or particular structural elements
such as multilayered walls [13] or double facades with integrated
photovoltaic panels or electrically-operated blinds [14].
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Fig. 1. Example of a Pareto curve.
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A certain amount of work has been done on optimizing combi-
nations of characteristics of building envelopes such as wall or
window type, orientation, or type of HVAC system [14–22]. Here
the difficulties stem, in particular, from the nature of the parame-
ters under consideration. But the process is made more complex by
the interactions that occur between the different parameters. For
example, the orientation of a building will determine the incidence
of natural light, which in turn will influence the choice of window
type. And Caldas [21] points out that the optimization problem be-
comes more complicated still if it is the geometry of the building in
its entirety that is the object of the exercise.

2.2. Optimization methods

Goldberg [23] suggested that the optimization methods could
be divided up into three groups: enumerative methods, calculus-
based methods and random methods. And we would concur.

2.2.1. Enumerative methods
The principle of enumerative methods is simple. Within a finite

search space, or a discretized infinite search space, an algorithm
sequentially assesses the objective function at every point in the
space. But methods of this type lack real-world applicability.
Though they are an improvement on basic trial-and-error heuris-
tics, search spaces in the field of building design are generally
too large for enumerative methods to be a practical proposition.

2.2.2. Calculus-based methods
These methods are sometimes termed ‘‘systematic” [17] or ‘‘ex-

act” [24]. They are based on the rigorous mathematical expression
of objectives, or their gradients.

Such methods have been widely used in the field of building de-
sign. To optimize the thickness of insulation layers, for example,
Bolattürk [5] used the following method: a mathematical expres-
sion of the life-cycle cost is produced, the derivative is calculated,
and the optimum value is the one for which the derivative is zero.

This ‘‘simplex” method and its variants, such as the Hooke-Jeeves
method, were used by Peippo et al. [25] to optimize the design of
solar low-energy buildings, on the basis of capital and energy costs.
Bouchlaghem and Letherman [16] focused on the building enve-
lope, and used analytical and graphical methods to optimize its
thermal performance.

The main drawback of these methods is that the possibility of con-
vergence depends on the regularity of the objective functions, which,
as a result, must have an explicit expression, or permit derivatives.

2.2.3. Random (or stochastic) methods
With methods of this type, no hypothesis about the regularity of

objective functions is necessary. This makes them easier to couple
to building assessment tools.

Such methods have often been developed by analogy with oth-
ers. For example, simulated annealing methods are based on ther-
modynamics, and they can be compared to annealing processes
whereby a molten metal is slowly cooled to form crystals. The
internal energy represents an objective, and the genetic algorithm
defines a minimal energy state. Nielsen [17] developed a method
based on simulated annealing to optimize building design on the
basis of a life-cycle analysis.

Genetic algorithms (GA) use stochastic methods, and are based
on the mechanisms of natural selection and genetics [23]. The basic
form of the GA, the ‘‘simple genetic algorithm”, is widely used in
the field of building optimization. Huang and Lam [26], for exam-
ple, used a simple genetic algorithm to optimize controller param-
eters for HVAC systems, and Wright et al. [10] used one to
determine the optimal dimensioning of a HVAC system. GAs can
also be used to solve more complex problems. Wang et al.
[19,27] used an adapted and improved GA to optimize ‘‘green”
building design, and Caldas [21] applied the method to problems
of architectural optimization.

In sum, the classification of optimization methods depends on
the elements to be optimized, and on the search method. Multicri-
teria analytical approaches also differ, as we shall now see.
2.3. Existing approaches to multicriteria analysis

The renovation of a building involves factors such as energy
consumption, cost and thermal comfort. Where the problem arises
is in dealing simultaneously with these potentially conflicting
objectives.

Znouda et al. [28] studied the optimization of building design in
a Mediterranean context, beginning with the minimization of en-
ergy consumption, then looking at costs. As expected, the results
diverged, and no single optimum was found. They then tried an-
other approach [20] whose aim was to find a solution for which
the sum of its distances from the two previous solutions would
be minimized. The result was a compromise, but all of the objec-
tives were not examined simultaneously.

In the application of aggregative methods to multicriteria
problems, constraints and penalty functions can serve as arbiters.
Charron and Athienitis [14], in their optimization of a solar zero-
energy home, took cost as their main objective. Energy consump-
tion was predetermined, and the objective was defined as the
sum of the cost function and a penalty function linked to thermal
discomfort. A similar approach was taken in a study using the opti-
mization toll OPTISOL [29] with two objectives, namely energy
consumption and costs, each of which could be taken either as
an objective function or a fixed target in a penalty function. This
type of method allows several objectives to be treated simulta-
neously, but with different types of status.

Multiobjective problems are susceptible to the ‘‘Pareto ap-
proach”, which, for optimization purposes, assigns the same
weight to each objective [30], treats them all individually, and ar-
rives at compromises between them by identifying those solutions
that are non-dominated, or ‘‘Pareto optimal”. A solution is non-
dominated when no alternative solution exists that will promote
a particular objective without simultaneously hampering the
attainment of another.

Fig. 1 gives an example of a Pareto curve for an optimization
problem with two objectives.

The optimization of three objectives results in a ‘‘Pareto sur-
face”. For more than three objectives, a Pareto optimization can
still be carried out, but direct visualization is not possible.

Pareto optimization was introduced in the 1980s by Radford,
Gero and D’Cruz [31–34], and it is now widely used in building de-
sign optimization [10,14,35]. It was used, for example, by Wang
et al. [19] to optimize ‘‘green” buildings according to life-cycle
exergetic assessment and costs, and by Verbeeck and Hens [36]
to minimize the global warming potential of low-energy dwellings,
with a particular focus on energy consumption and construction
costs. Caldas developed a tool [21] that dealt with the same type
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of questions: energy, economics and sustainability issues such as
greenhouse gas emissions. And this tool could equally be used to
minimize the energy consumption of HVAC and lighting systems.
Sambou has used a Pareto optimization approach [13] to optimize
the thermal capacity and resistance of multilayered and alveolar
walls. And there are also applications in ventilation control [37,38].

The fact that this method produces pluralities of optimized
solutions is one of its big advantages, particularly in view of the
fact that where buildings are concerned, the solution to a problem
is rarely clear and simple. And for Wang et al. [19] and Pernodet
et al. [29], it also provides a better understanding of how each of
a set of objectives affects the overall picture.
Table 1
Reference components of building envelopes.

Composition (thickness in mm)

External wall type
EW1 Plaster (13) + polyurethane (50) + concrete (180)
EW2 Plaster (13) + glass wool (100) + concrete (180)
EW3 Plaster (10) + polystyrene (100) + concrete (180)
3. Development of a multicriteria tool for optimizing the
renovation of buildings

The aim of the present study was to build on previous work re-
lated to building assessment and design optimization in order to de-
velop a new tool, MultiOpt, for the multicriteria optimization of
renovation operations, with regard to building envelopes, HVAC sys-
tems and control strategies. Four criteria were considered: energy
consumption, cost, life-cycle environmental impact and thermal
comfort. MultiOpt is based on an existing optimization method,
NSGA-II, a non-dominated sorting genetic algorithm (NSGA).
EW4 Plaster (13) + hemp wool (100) + concrete (180)
EW5 Plaster (13) + glass wool (160) + concrete (180)
EW6 Plaster (13) + mineral wool (100) + concrete (180)
EW7 Plaster (13) + mineral wool (55) + concrete (180)
EW8 Plaster (13) + insulation with feather (40) + concrete (180)
EW9 Plaster (13) + insulation with feather (110) + concrete (180)

Roof type
R1 Mineral wool (false ceiling, 40) + air layer (200) + concrete

(240) + expanded perlite board (50) + waterproofing membrane (5)
R2 Mineral wool (40) + air layer (200) + concrete (240) + mineral wool

(80) + waterproofing membrane (5)
R3 Mineral wool (40) + air layer (200) + concrete (240) + polystyrene

(100) + waterproofing membrane (5)
R4 concrete (240) + expanded perlite board (50) + waterproofing

membrane (5)
R5 concrete (240) + mineral wool (80) + waterproofing membrane (5)
R6 concrete (240) + polyurethane (80) + waterproofing membrane (5)
R7 concrete (240) + polystyrene (100) + waterproofing membrane (5)
R8 concrete (240) + polystyrene (200) + waterproofing membrane (5)

Ground floor
GF1 PVC floor covering (3) + concrete (50) + polystyrene (80) + concrete

(130)
GF2 PVC floor covering (3) + concrete (50) + polyurethane (50) + concrete

(130)
GF3 Carpet (10) + concrete (50) + polystyrene (80) + concrete (130)
GF4 Carpet (10) + concrete (50) + polyurethane (50) + concrete (130)
GF5 Floor tiles (10) + concrete (50) + polystyrene (80) + concrete (130)
GF6 Floor tiles (10) + concrete (50) + polyurethane (50) + concrete (130)

Intermediate floor
IF1 PVC floor covering (3) + concrete (160) + air layer (200) + mineral wool

(false ceiling, 40)
IF2 PVC floor covering (3) + concrete (160)
IF3 Carpet (10) + concrete (160) + air layer (200) + mineral wool (40)
IF4 Carpet (10) + concrete (160)
IF5 Floor tiles (10) + concrete (160) + air layer (200) + mineral wool (40)
3.1. An optimization tool based on NSGA-II

NSGA-II was developed by Professor Kalyanmoy Deb’s team at
Kanpur Genetic Algorithms Laboratory [39,40]. It is one of the most
efficient genetic algorithms for multiobjective optimization, and is
often used for multicriteria optimization in different domains,
including construction [41–44].

Like any other genetic algorithm, NSGA-II is based on the evolu-
tion of a population of ‘‘individuals”, each of which is a solution to
an optimization problem. In our work, an individual represents the
result of a renovation operation carried out on a building. To use a
genetic analogy, each individual is represented by a chromosome
whose genes correspond to a number of the individual’s character-
istics, as in Fig. 2.

The implementation procedure for NSGA-II was presented by
Deb, Huang, Hammage and Sanaye [39,40,45–47], as follows. The
first generation of the population is randomly selected. It is then
sorted into fronts by Pareto optimization. Individuals that are not
dominated by any other are assigned to front number 1. Individu-
als dominated only by individuals in front number 1 are assigned
to front number 2, etc. Each individual in each front is assigned a
rank value based on the front to which it belongs.

Each individual is also assigned a ‘‘crowding distance”, which is
a measure of how close an individual is to its neighbours. A large
average crowding distance indicates a high degree of diversity.

Parents are selected for the first generation of individuals using
binary tournament selection based on rank and crowding distance.
N individuals are selected on the basis of low rank number, with
crowding distance being a secondary selection criterion. After
Fig. 2. A solution to an optimization problem, as represented by a chromosome.
undergoing crossover and mutation, the parents and their offspring
are sorted once more on the basis of non-domination, and N indi-
viduals are selected, as before, to form the next generation, on the
basis of previous rank and crowding distance.
3.2. Definition of parameters

With genetic algorithms, as already mentioned, solutions to
optimization problems are represented by chromosomes. And the
parameters of the optimization procedure are the genes that make
up these chromosomes. In MultiOpt, these parameters are related
to building renovation operations. Renovation operations of vary-
ing scope are proposed.
3.2.1. Parameters related to control strategies
Some parameters are related to building control strategies.

Cooling and shade control can improve a building’s performance
IF6 Floor tiles (10) + concrete (160)

Internal partition wall
PW1 Plaster (70)
PW2 Brick (50)
PW3 Concrete (100)
PW4 Plaster (13) + mineral wool (70) + Plaster (13)

Window
W1 Single pane
W2 Double pane
W3 Triple pane
W4 Double pane, low-e
W5 Double pane, low-e, argon
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at minimal cost. And HVAC systems may also be taken into account
in a renovation operation.

Parameters related to control strategies and HVAC systems are
considered to be continuous variables, in the sense that they may
take any given value within their definition domain. For example,
the threshold value for the opening of a blind varies between 50
and 500 W/m2 (with a default setting that can be changed by the
user).
3.2.2. Parameters related to the building envelope
A renovation operation may encompass the envelope of a build-

ing whose characteristics, e.g. external wall type, are considered as
discrete variables that can take only a limited number of reference
values. This decision was influenced by the conclusions of studies
by Sambou [13] and Pernodet et al. [29]. The point is that if wall
characteristics are considered as combinations of continuous vari-
ables, they can be represented in the model as genes. But the fact
that they evolve independently means that links between them
are not preserved. In other words, the characteristics of optimized
walls may not be mutually compatible. In order to avoid this diffi-
culty, the characteristics of walls to be optimized are grouped in
sets that correspond to reference walls [29].

Though it may be possible to assess the thermal transmittance
of a wall in terms of efficiency and/or cost, it is difficult to assess
the life-cycle environmental impact of insulation if the nature of
the material is unspecified. Hence the need for reference walls
using materials of known, certified performance.

MultiOpt includes six discrete parameters for building
envelopes:

� external wall type;
� roof type;
� ground floor type;
� intermediate floor type;
� internal partition wall type; and
� window type.

Reference walls cover the range of available building materials,
as shown in Table 1.
3.3. Objectives

For our case study (see below, Section 4) we used four optimi-
zation criteria: energy consumption, thermal comfort, cost and
environmental impact.
Fig. 3. Schematic struc
The annual final energy consumption criterion covers heating,
cooling, ventilation and lighting. It is calculated by TRNSYS and CO-
MIS [48–50].

The thermal comfort criterion is based on the PPD (percentage
of people dissatisfied) index [51]. It represents the number of hours
during which the PPD is above 15%, as determined by the TRNSYS
multizone ‘‘Type 56” component.

The economic criterion is the initial investment cost. A price
database has been established for the reference walls presented
in Table 1.

Equivalent CO2 units are used in assessing environmental im-
pact over the life cycle of the building materials. The reference data
was procured from a database, INIES [52].
3.4. The structure of MultiOpt

To summarize, MultiOpt has three structural components: a
graphical user interface (GUI), a genetic algorithm and a set of
assessment methods. It is presented schematically in Fig. 3.

MultiOpt is used for the optimization of building renovation
schemes. The procedure begins with a model that has certain char-
acteristics: a given external form and internal configuration, and an
occupation schedule corresponding to that of the actual building.
The parameters to be optimized, for example the window type or
the set point for shade control, are of course not defined.

The optimization problem is set out in the GUI, with parameters
and combined variation domains that are determined by the model
of the building. Objectives and genetic algorithm settings are also
chosen in the GUI. With MultiOpt, one or more objectives can be
pursued simultaneously. The description of the building and the
choice of parameters, objectives and algorithm settings constitute
the definition of the optimization problem. The genetic algorithm
then carries out the process. The characteristics of the first gener-
ation of individuals are randomly selected, i.e. the values of the
parameters are randomly chosen in the definition domains for
those that are continuous, and among the reference walls for those
that are discrete. Any given population consists of individuals rep-
resenting buildings resulting from renovation operations carried
out on the model, assessed according to the chosen objectives
using tools and databases coordinated by TRNSYS. The assessment
results provide the basis for selecting the parents of the next gen-
eration (see the description of NSGA-II in Section 3.1), and so on.
The optimization process continues until the ‘‘Stop” command is
triggered. In MultiOpt this occurs after a predetermined number
of generations.

At the end of the optimization process, the GUI displays the re-
sults, i.e. descriptions of optimized scenarios for the renovation of
ture of MultiOpt.



Fig. 4. Schematic views of the building used for the case study.
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the building in question, and their degree of success in achieving
the stated objectives.
4. Implementation of the optimization method: a case study

In this study, MultiOpt was used to optimize the renovation of a
building. The criteria were energy consumption, cost, the life-cycle
environmental impact of the building materials and thermal
comfort.

4.1. The building in question

The building was a school whose floor plan was typical of cur-
rent French building stock. Fig. 4 shows schematic views of the
building in question.

This is a three-storey building with a total floor area of 640 m2.
On each storey, a corridor gives access to three west-facing class-
rooms. The building is in Nice, in southern France. The climate is
Mediterranean.

The building is occupied from Monday to Friday, 8:00 to 18:00,
nominally by 20 people/classroom. There is artificial lighting, con-
trolled by luminosity sensors and switches, at 10 W/m2 in the
rooms and 5 W/m2 in the corridors. The building is heated by elec-
tricity at 100 W/m2. The set point temperature is 20 �C during the
day and 16 �C during the night and at weekends. There is natural
ventilation, and no active cooling system. The airtightness of the
building is 0.53 ach at 4 Pa. The west facade has automatically-con-
trolled shading equipment.

4.2. Optimization settings

All the eight optimization parameters treated in this article
were handled by MultiOpt. Six of them concerned the building’s
envelope: external wall type (EW), roof type (R), ground floor type
(GF), intermediate floor type (IF), partition wall type (PW) and win-
dow type (W). The other two involved shade control, namely the
threshold value for the illumination of the facade (S) and the dead
band associated with the on–off controller (DS).

The parameters relating to the envelope of the building were
discrete, and their possible values are given in Table 1. Those relat-
ing to shade control were continuous. S varied between 50 and
500 W/m2, and DS between 0 and 500 W/m2.

The setting of the genetic algorithm was the same for all the
optimizations. The studied population consisted of 40 individuals,
and the optimization process was terminated after 70 iterations.

The protocol carried out by TRNSYS and COMIS to assess energy
consumption consisted essentially of annual simulations, with
time steps of one hour. The process took 60 h of computing time.

Three sets of optimizations were carried out. The first set fo-
cussed on monocriterion optimization, the aim being to minimize
the values of four criteria: environmental impact, cost, energy con-
sumption and thermal discomfort. The second set involved the
multicriteria optimization of pairs of criteria, with the aim of
understanding the interactions between objectives, and how each
could affect the building’s characteristics and performance. The
third set involved the multicriteria optimization of groups of three
criteria. The general aim was to find out how the results varied be-
tween the first two sets of optimizations and the last one, and to
produce the visualization of the results that would be best suited
to their analysis.
4.3. First set of optimizations (monocriterion)

The objective of these optimizations was to minimize the values
of four criteria: environmental impact, cost, energy consumption
and thermal discomfort. Given that there was only one overall
objective, i.e. minimization, a single optimized solution was ob-
tained in each case.
4.3.1. Monocriterion minimization of life-cycle environmental impact
Here, the aim was to minimize CO2 over the life cycle of the

building materials. Shade control was taken to have no significant
effect.

The results are given in Fig. 5 and Table 2.
In the optimized building, the quantity of building materials

used was a minimum: the thickness of the insulation layers was
low, there was no false ceiling, and the windows were single-
glazed. In other words, the lower the amount of building materials
used, the lower the amount of CO2 discharged.

For this operation, the results were checked against the envi-
ronmental database. They matched the results obtained by
MultiOpt.
4.3.2. Monocriterion minimization of costs
The results of this procedure are given in Fig. 5 and Table 2.
As in the previous case, the optimized building had low insula-

tion levels: the windows were single-glazed, there was no false
ceiling, and the insulation on the walls was thin. In other words,
the minimization of costs also meant a minimization of the quan-
tity of building materials used. And, as in the previous case, the
optimal floor covering was PVC. A comparison with the price data-
base gave similar results to those obtained by MultiOpt.
4.3.3. Monocriterion minimization of energy consumption
This consisted of minimizing the consumption of energy for

heating and lighting purposes. The results are given in Fig. 5 and
Table 2.

The optimization results were very different from those of the
previous two procedures, in that the insulation level was high,



Fig. 5. Results of the monocriterion trials.

Table 2
Results of monocriterion optimizations of the building’s envelope.

EW R GF IF PW W S (W/m2) DS (W/m2)

Opt. mono environmental impact 8 6 1 2 3 1 500 500
Opt. mono investment costs 3 4 1 2 3 1 500 500
Opt. mono energy consumption 5 3 3 4 3 5 495 320
Opt. mono thermal comfort 8 4 5 4 2 1 50 47
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with thick layers of insulating material, a false ceiling for the top
storey, energy-efficient windows and carpeting.

The shade control values were high. In other words, shade con-
trol did not come into play, because the incident solar radiation
was never strong enough. So the optimized building was to all in-
tents and purposes a building without shade control.
4.3.4. Monocriterion optimization of thermal comfort
Here, the aim was to minimize the duration of thermal discom-

fort. The building was in a region with a Mediterranean climate,
but there was no cooling system, either active or passive. PPD
was used to measure discomfort in terms of both heat and cold.
The results are given in Fig. 5 and Table 2.

In the optimized building, the insulation level was relatively
low, with no false ceiling, and single-glazed windows. Shade con-
trol was used to avoid overheating.

The results produced by this first set of optimizations are given
in Fig. 5. Those for energy consumption diverged significantly from
the others. Those for CO2 and cost were comparable.

In sum, the results produced by the monocriterion trials
brought out some of the interactions between the different objec-
tives. The second set of optimizations produced further informa-
tion about these interactions.
4.4. Second set of optimizations (multicriteria)

In each of these multicriteria optimizations, two criteria were
chosen from among the following: environmental impact, cost, en-
ergy consumption and thermal comfort. This gave rise to a number
of optimized solutions, which were integrated into a Pareto front.
Fig. 6. Results of the multicriteria optimization of environmental impact and cost.
4.4.1. Multicriteria optimization of CO2 emissions and costs
Here, the aim was to simultaneously minimize CO2 (over the life

cycle of the building materials) and the cost of the renovation oper-
ation. The results are given in Fig. 6.
The optimization process generated four solutions, which
formed a Pareto front. One of them corresponded to the monocri-
terion optimum minimizing the costs. The monocriterion results
for CO2 and cost were quite similar. There were the same reference
walls for the ground floor and the middle floor, the same partition
walls and windows. As regards these envelope components, the
solutions for the multicriteria optimizations were the same as for
the monocriteria optimizations. And in the multicriteria trials, as
in the monocriterion trials, there was a minimization of the quan-
tities of materials used for the other envelope components, namely
the external walls and the roof.

The similarities between the monocriterion results meant that
there was little variation among the multicriteria results.
4.4.2. Multicriteria optimization of energy consumption and costs
The monocriterion trials would suggest that, in contrast to the

previous case, these objectives were mutually opposed. The results
are given in Fig. 7.
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The results fall between the monocriterion optima. There is a
larger number of solutions than in the previous case, and some
of them are characterised by low energy consumption.

With regard to the characteristics of the envelope, the solutions
are all similar to one or other of the monocriterion solutions, ex-
cept as regards the roof, for which the solutions are intermediate,
with high levels of relatively cheap insulation materials.
4.4.3. Multicriteria optimization of energy consumption and thermal
comfort

The results of these trials are given in Fig. 8.
The numerous solutions all fall between the two monocriterion

optima, though none is identical to either.
There are various shade control values, and the minimization of

thermal discomfort does involve shade control.
As regards the characteristics of the envelope, a large number of

solutions were obtained. This may be due to the fact that the mon-
ocriterion optimizations for these two parameters gave very differ-
ent results.
4.4.4. Comparisons between multicriteria optimizations involving two
objectives

The three sets of optimizations presented above resulted in the
following observations. Firstly, the number of solutions generated
seems to depend on the chosen objectives, and on their degree of
convergence. And the number of solutions for objectives with sim-
ilar characteristics (e.g. environmental impact and cost) is lower
Fig. 7. Results of the multicriteria optimization of energy consumption and costs.

Fig. 8. Results of the multicriteria optimization of energy consumption and thermal
comfort.
than for those with dissimilar characteristics (e.g. energy con-
sumption and thermal comfort).

Regarding the characteristics of the building, the diversity of the
multicriteria solutions was inversely proportional to the degree of
similarity of the monocriterion results.
4.5. Third set of optimizations: multicriteria, with three criteria

The three criteria dealt with in this set of optimizations were
energy consumption, cost and thermal comfort. They were treated
simultaneously, and the optimized solutions formed a Pareto sur-
face in three dimensions.

The results are given in 3D in Fig. 9, and in 2D projections in
Figs. 10–12.

In the 3D visualization (Fig. 9), which gives the results for all
three objectives, the Pareto surface synthesizes the different solu-
tions. The optimization operation has produced no single, defini-
tive result. The Pareto front obtained by the optimization of
energy consumption and thermal comfort was what determined
the general form of the Pareto surface, which suggests that the link
between these two objectives was stronger than either of their
links to the other objective, namely cost.

Fig. 10 presents the results for energy consumption and cost. It
is a 2D projection. The third criterion, thermal comfort, is not in-
cluded. (The three monocriterion optima are given as ‘‘mono en-
ergy”, ‘‘mono investment” and ‘‘mono thermal comfort”.) The
Fig. 9. Results of multicriteria optimization – 3D visualization.

Fig. 10. Results of multicriteria optimization of energy consumption and cost – 2D
projection.



Fig. 11. Results of multicriteria optimization of energy consumption and thermal
comfort – 2D projection.

Fig. 12. Results of multicriteria optimization of cost and thermal comfort – 2D
projection.
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inclusion of thermal comfort in the analysis would have resulted in
an increase in both energy consumption and cost.

Fig. 11 presents the results for energy consumption and thermal
comfort. It is a 2D projection. The third criterion, cost, is not in-
cluded. To do so would have produced similar results.

Fig. 12 presents the results for cost and thermal comfort. It is a
2D projection. The third criterion, energy consumption, is not in-
cluded. To do so would have resulted in a higher level of both ther-
mal discomfort and cost.
Fig. 13. Selection of the ‘‘best” results of multicriteria optimization.
Regarding the characteristics of the envelope, the simultaneous
optimization of three objectives gave a high diversity of reference
walls. Some solutions had one or two characteristics approximat-
ing to the monocriterion optima, but the characteristics them-
selves were generally different.

The solutions obtained by the simultaneous optimization of three
objectives were numerous and diverse. Their performance in term of
energy consumption, cost and thermal comfort was also diverse, as
were the characteristics of their envelopes. The large number of
solutions might be considered either as an advantage or a disadvan-
tage: on the one hand, there is a large variety of interesting propos-
als; on the other hand, it may be difficult to choose between them.

In order to make such choices easier, only the ‘‘best” solutions
for each objective were retained. The result of this operation for
cost and energy consumption is given as an example in Fig. 13.

It is difficult to achieve a satisfactory outcome for two or more
objectives treated simultaneously. If one of them is favoured, the
results for the others will be inferior. The results will also be closer
to monocriterion optima in terms of characteristics and perfor-
mance. Regarding the envelope, diversity will decline. In this par-
ticular case, for example, all the results for the external walls
corresponded well to the monocriterion optima.

In the selected group of ‘‘best” solutions, the interactions be-
tween objectives were further highlighted, and this is something
that could facilitate decision-making in terms of overall per-
formance.

5. Conclusion

The aim of the study presented in this article was to develop a
tool, MultiOpt, that would optimize the renovation of buildings
across a range of objectives, with contributions from databases
and assessment software. The decision to use NSGA-II seems to
have been justified, in view of the fact that where optima were
available from a database, they were found to be consistent with
those produced by MultiOpt. Furthermore, genetic algorithms can
handle both discrete and continuous parameters, along with a
wide diversity of characteristics, as regards, for example, the enve-
lopes of buildings or systems control.

The nature of a building’s envelope can be expressed as discrete
properties of reference walls. This facilitates the characterisation of
properties such as energy consumption, cost and life-cycle envi-
ronmental impact, while also avoiding solutions that are incom-
patible with available building materials.

Regarding the case study in which MultiOpt was used to opti-
mize the renovation of a building, the operation concerned only
its envelope, and was based on four optimization criteria: energy
consumption, thermal comfort, cost and life-cycle environmental
impact. Assessment software and databases were used to check
the solutions generated by MultiOpt. The simulation time for the
multicriteria optimization was substantial, but not excessive. The
preliminary optimization of single criteria provided an under-
standing of their impact on the building’s overall performance,
and comparisons of the different results revealed the convergences
and divergences that existed between objectives. But MultiOpt can
also be used to optimize a number of objectives simultaneously,
and to produce alternative solutions for such combinations. It
can assess their overall performance, while at the same time
quantifying the impact of their individual components. In our view,
this means that MultiOpt has the potential to serve as an aid to
decision-making in the context of renovation operations.
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