PROGRAMACIÓN LINEAL: MÉTODO SIMPLEX

REGLAS DE EQUIVALENCIA

Primera regla

Maximizar CX es equivalente a minimizar -CX

Ejemplo: Max Z = $3x_1 + 4x_2$ es equivalente a Min (-Z) = $-3x_1 - 4x_2$

O también se puede realizar a la inversa:

Minimizar CX es equivalente a Maximizar –CX

Ejemplo: Min Z = $7x_1 + 9x_2$ es equivalente a Max (-Z) = $-7x_1 - 9x_2$

Segunda regla

Una desigualdad $AX \leq B$ es equivalente a $-AX \geq -B$

Ejemplo:

$$3x_1 + 6x_2 + 4x_3 \le 150$$
 es equivalente a $-3x_1 - 6x_2 - 4x_3 \ge -150$

Tercera regla

Toda restricción de la forma AX = B se puede establecer como la intersección de dos desigualdades así: $AX \le B$ y $AX \ge B$

Para la aplicación y solución de un problema mediante el método simplex se deben tener en cuenta los siguientes pasos:

PASO 1. Lleve la función objetivo a maximización mediante la aplicación de la primera regla de equivalencia.

PASO 2. Transforme todas las restricciones a igualdades de la siguiente manera (esto se realiza para formar los vectores unitarios que generan la primera solución básica factible):

- Restricción ≤ : sume una variable de holgura.
- Restricción ≥: reste una variable de exceso y sume una variable artificial para generar el vector unitario, y penalice la función objetivo.
- Restricción =: sume una variable artificial para generar el vector unitario y penalice la función objetivo.

PASO 3. Lleve toda todos los coeficientes al tablero simplex tal como se muestra en la tabla 1.

- En el C₁ ubique todos los coeficientes de las variables en la función objetivo.
- En el C_B coloque los coeficientes de la función objetivo, pero sólo de las variables básicas.
- Ubique en la base las variables básicas, que son aquellas que generan dentro de las restricciones los vectores unitarios. (Siempre serán las variables de holgura y las variables artificiales)
- En el X_B se asignan los valores del término independiente en cada una de las restricciones (en el tablero inicial).
- Debajo de cada variable ubique el vector de cada una de ellas en las restricciones (coeficientes de las variables en las restricciones).

PASO 4. Evalué si la solución actual es óptima. Para esto calcule los Z_J-C_J de la siguiente manera:

$$Z_I - C_I = \sum_{B=1}^{m} (C_B K_B) - C_I$$
, donde:

 \mathcal{C}_B son los coeficientes de las variables básicas en la función objetivo;

 C_I son los coeficientes de la función objetivo y

 K_B es cada uno de los vectores de las variables a través de las diferentes soluciones.

Los vectores C_B y K_B van cambiando de tablero en tablero a medida que se avanza hacia la solución óptima del problema.

Si todos los Z_J-C_J son mayores o iguales que cero; la solución se hace óptima. De lo contrario continúe con el paso 5.

Tabla 1								
C _J						Base	ХВ	Cociente
C _B	X ₁	X ₂	H ₁	H ₂	H ₃			
Z _J - C _J						Z=		

PASO 5. Seleccione la variable que entra a la base: entra a la base aquella variable que tenga el $Z_J - C_J$ más negativo. En caso de haber empate entre dos a más variables; el empate se rompe arbitrariamente.

PASO 6. Seleccione la variable que sale de la base: para seleccionar la variable que abandonará la base aplique la siguiente regla: MIN $\left\{\frac{X_B}{K_B}\right\}$ teniendo en cuenta sólo aquellos valores de K_B mayores que cero (positivos). K_B es el vector columna de la variable que entra a la base.

PASO 7. Selección del pivote: el pivote es aquella posición donde se intercepta la columna de la variable que entra (K_B) y la fila de la variable que sale.

PASO 8. Mediante operaciones matriciales entre filas convierta la posición pivote en uno.

PASO 9. Utilizando operaciones matriciales convierta las demás posiciones de vector K_B en ceros.

PASO 10. Determine nuevamente el vector C_B y regrese al paso 4. Continúe con este ciclo hasta que se den las condiciones de optimalidad que pide el cuarto paso.