
1

15 quality goals for requirements

Justified

Correct

Complete

Consistent

Unambiguous

Feasible

Abstract

Traceable

Delimited

Interfaced

Readable

Modifiable

Verifiable

Prioritized*

Endorsed

Marked attributes are part of IEEE 830, see below
* “Ranked for importance and/or stability”

2

Verifiable requirements

Non-verifiable :
The system shall work satisfactorily
The interface shall be user-friendly
The system shall respond in real time

Verifiable:
The output shall in all cases be produced within 30
seconds of the corresponding input event. It shall be
produced within 10 seconds for at least 80% of input
events.
Professional train drivers will reach level 1 of
proficiency (defined in requirements) in two days of
training.

Adapted from: IEEE

3

Practical advice

Favor precise, falsifiable language
over pleasant generalities

4

Complete requirements

Complete with respect to what?

Definition from IEEE standard (see next) :

An SRS is complete if, and only if, it includes the following elements:
All significant requirements, whether relating to functionality,
performance, design constraints, attributes, or external
interfaces. In particular any external requirements imposed by
a system specification should be acknowledged and treated.
Definition of the responses of the software to all realizable
classes of input data in all realizable classes of situations. Note
that it is important to specify the responses to both valid and
invalid input values.
Full labels and references to all figures, tables, and diagrams in
the SRS and definition of all terms and units of measure.

5

IEEE 830-1998

”IEEE Recommended Practice for Software Requirements
Specifications”

Approved 25 June 1998 (revision of earlier standard)

Descriptions of the content and the qualities of a good
software requirements specification (SRS).

Goal: “The SRS should be correct, unambiguous, complete,
consistent, ranked for importance and/or stability,
verifiable, modifiable, traceable.”

6

IEEE 830-1998

”IEEE Recommended Practice for Software Requirements
Specifications”

Approved 25 June 1998 (revision of earlier standard)

Descriptions of the content and the qualities of a good
software requirements specification (SRS).

Goal: “The SRS should be correct, unambiguous, complete,
consistent, ranked for importance and/or stability,
verifiable, modifiable, traceable.”

7

15 quality goals for requirements

Justified

Correct

Complete

Consistent

Unambiguous

Feasible

Abstract

Traceable

Delimited

Interfaced

Readable

Modifiable

Testable

Prioritized

Endorsed

8

IEEE Standard: definitions

Contract:
A legally binding document agreed upon by the customer and supplier. This
includes the technical and organizational requirements, cost, and schedule for a
product. A contract may also contain informal but useful information such as the
commitments or expectations of the parties involved.
Customer:
The person, or persons, who pay for the product and usually (but not necessarily)
decide the requirements. In the context of this recommended practice the
customer and the supplier may be members of the same organization.
Supplier:
The person, or persons, who produce a product for a customer. In the context of
this recommended practice, the customer and the supplier may be members of
the same organization.
User:
The person, or persons, who operate or interact directly with the product. The
user(s) and the customer(s) are often not the same person(s).

9

IEEE Standard

Basic issues to be addressed by an SRS:

Functionality

External interfaces

Performance

Attributes

Design constraints imposed on an implementation

10

IEEE Standard

Recommended document structure:
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations Glossary!
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements
Appendixes
Index

11

Practical advice

Use the recommended IEEE structure

12

Practical advice

Write a glossary

13

Recommended document structure

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements
Appendixes
Index

14

Example section: scope

Identify software product to be produced by name
(e.g., Host DBMS, Report Generator, etc.)

Explain what the product will and will not do

Describe application of the software: goals and
benefits

Establish relation with higher-level system
requirements if any

15

Example section: product perspective

Describe relation with other products if any.
Examples:

System interfaces
User interfaces
Hardware interfaces
Software interfaces
Communications interfaces
Memory
Operations
Site adaptation requirements

16

Example section: constraints

Describe any properties that will limit the developers’ options
Examples:

Regulatory policies
Hardware limitations (e.g., signal timing requirements)
Interfaces to other applications
Parallel operation
Audit functions
Control functions
Higher-order language requirements
Reliability requirements
Criticality of the application
Safety and security considerations

17

Recommended document structure

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements
Appendixes
Index

18

Specific requirements (section 3)

This section brings requirements to a level of detail
making them usable by designers and testers.
Examples:

Details on external interfaces
Precise specification of each function
Responses to abnormal situations
Detailed performance requirements
Database requirements
Design constraints
Specific attributes such as reliability, availability,
security, portability

19

Possible section 3 structure

3. Specific requirements
3.1 External interfaces

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces

3.2 Functional requirements
…

3.3 Performance requirements
…

3.4 Design constraints
…

3.5 Quality requirements
…

3.6 Other requirements
…

20

Your turn! Outline some sections

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.
No copy of the book may be
both available and checked
out at the same time.
A borrower may not have
more than a predefined
number of books checked out
at one time.

