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Summary

1

 

Anthropogenic changes in the global climate are shifting the potential ranges of many
plant species.

 

2

 

Changing climates will allow some species the opportunity to expand their range,
others may experience a contraction in their potential range, while the current and
future ranges of some species may not overlap. Our capacity to generalize about the
threat these range shifts pose to plant diversity is limited by many sources of uncertainty.

 

3

 

In this paper we summarize sources of  uncertainty for migration forecasts and
suggest a research protocol for making forecasts in the context of uncertainty.
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Introduction

 

Although the migration of populations has been of
interest to biologists for centuries, it was Darwin (1859)
who emphasized the role that it plays in influencing
the distribution and diversity of organisms. Climate
change is redefining the potential distribution of
organisms at an unprecedented rate. The capacity of
plant species to fill redefined ranges will be strongly
influenced by their migration rates. Hence it has been
argued that migration rates will play a pivotal role in
defining future patterns of plant diversity (Pitelka 

 

et al

 

.
1997).

Fisher (1937), Kolmogorov 

 

et al

 

. (1937) and Skellam
(1951) first developed mathematical techniques for
predicting rates of population spread. These early
models were able to translate assumptions concerning
life history and dispersal into estimates of  rates of
population spread. Within the context of  simple
models, it was demonstrated how reproduction and
dispersal might influence rates of spread. The underly-
ing assumption, that seed dispersal followed a diffusion

process that could be described by a Gaussian distri-
bution, led to the apparent paradox that the migration
rates predicted by these models were very much slower
than much of the evidence suggested (Reid 1899; Clark

 

et al

 

. 1998). This paradox was ‘resolved’ by using seed
shadows that could describe occasional long-distance
dispersal events in migration models. Such ‘fat-tailed’
dispersal distributions describe the dispersal data better
than Gaussian distributions (Clark 1998). Moreover,
migration models that used fat-tailed descriptions of
seed shadows generate migration rates that are easy to
reconcile with palaeo-evidence for Holocene migration
(Cain 

 

et al

 

. 1998; Clark 1998; Clark 

 

et al

 

. 1998; Higgins
& Richardson 1999).

While the resolution of the paradox was a break-
through for the way in which ecologists think about
migration, it exposed many more inadequacies in our
capacity to predict migration rates (Clark 

 

et al

 

. 2003).
These inadequacies suggest that there is a need for a
re-evaluation of the role of uncertainty in models and
data of  plant migration. We examine this uncertainty
in the context of the main application of such models –
forecasting which species are most likely to be threat-
ened by changing climate.
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The elements of migration modelling

 

Clark 

 

et al

 

. (2001b) presented a minimal model for
spread rate. The model contains parameters and
functions that describe the net reproductive rate, the
generation time and the dispersal of  offspring. The
net reproductive rate (R

 

0

 

) is the number of offspring
expected from a female and is calculated as the product
of  survivorship and fecundity integrated over age.
Generation time (T) can be calculated in several differ-
ent ways, depending on precisely how it is defined.
Perhaps the most common definition is the average age
of mothers of individuals in the population, calculated
as the ‘centre of mass’ of the fecundity 

 

×

 

 survival func-
tion (Pielou 1977). Generation time (T) and the net
reproductive rate (R

 

0

 

) together define the finite rate of
increase (

 

λ

 

) of a population (

 

λ

 

 = R

 

0

 

/T). The dispersal
kernel f(x) describes the distribution of offspring as a
function of the distance and, in more complicated
cases, the direction from the parent. It must be emphas-
ized that the dispersal kernel describes the distribution
of offspring, and not merely the distribution of seeds
around the parent plant. Hence the dispersal kernel
integrates the effects of seed dispersal, seedling germ-
ination and survivorship. In many cases, decomposition
of  the dispersal kernel into a seed to seedling sur-
vivorship kernel and seed dispersal kernel may generate
further insight.

Traditional models of spread are based on diffusion.
Diffusion occurs when dispersal is ‘bounded’, in the
sense that the dispersal kernel has a tail that decays at
least as fast as an exponential. In this case, simple
models of spread that represent population density as a
continuous variable (i.e. with non-integer ‘individuals’),
match empirical observations. They predict a coherent
‘travelling wave’ that eventually moves with constant
velocity. The travelling wave prediction is based on an
‘expected density’ approach and represents the progress
of the leading front of a spreading population (Skellam
1951; Weinberger 1982; Neubert & Caswell 2000). Such
models predict that migration rate is weakly dependent
on R

 

0

 

 (it is proportional to sqrt(log(R

 

0

 

))), and it is
proportional to mean dispersal distance, which is an
adequate summary of f(x). These models have been
successfully applied to a number of cases of animal
spread (Skellam 1951; Lubina & Levin 1988; Andow

 

et al

 

. 1990; van den Bosch 

 

et al

 

. 1992).
Traditional diffusion models cannot be used to esti-

mate spread of populations with dispersal kernels that
are fat-tailed. The velocity of spread for populations
characterized by fat-tailed dispersal is highly sensitive
to R

 

0

 

 and f(x). In fact, when the kernel is fat-tailed
(i.e. the variance of the kernel is infinite), an expected
density approach does not provide a finite estimate of
spread (Mollison 1977; Kot 

 

et al

 

. 1996), because the
continuous tail of such kernels predicts that fractions
of  individuals can arrive at locations unrealistically
far from the population front. For kernels with infinite
variances the expected density models make the

impossible prediction that spread accelerates indefi-
nitely as time passes (Kot 

 

et al

 

. 1996; Turchin 1998).
The problems that thwart efforts to predict potential

spread rates from populations described by fat-tailed
dispersal can be avoided by recognizing the discrete
nature of seeds. An ‘expected density’ approach provides
estimates of spread for discrete dispersal kernels that
can be empirical (Clark 

 

et al

 

. 2001a). In these cases,
there is no assumption regarding the shape of  the
kernel tail, but the estimate does depend on the distri-
bution of the data. A ‘furthest forward’ approach can
be used to estimate spread by using dispersal informa-
tion to determine a distribution of extreme dispersal
events (Clark 

 

et al

 

. 2001b). Similarly, simulation
models of migration typically simulate dispersal as a
discrete process and consequently generate finite rates
of spread (e.g. Higgins & Richardson 1999). Both the
furthest-forward and simulation approaches can be
applied with either parametric or non-parametric
dispersal kernels, including continuous kernels that
have infinite variances.

 

Sources of uncertainty in model forecasts

 

A forecast or prediction is a future probability distribu-
tion of a variable of interest. The forecast is contingent
on initial conditions, model type and parameter esti-
mates. Uncertainty is a measure of our confidence in a
statement or forecast. Three types of uncertainty are
particularly relevant to our discussion of migration
forecasts. 

 

Model uncertainty

 

 is caused by uncertainty
in the representation of ecological processes. 

 

Parameter
uncertainty

 

 is uncertainty in parameter estimates
derived from data and is consequently a function of
sample size. 

 

Inherent uncertainty

 

 results when, even
when the model and parameter estimate are perfect, the
processes under investigation are so fundamentally
influenced by stochastic processes that the mean
forecast is uninformative. The consequences of these
sources of  uncertainty are evaluated by Clark 

 

et al

 

.
(in press); here we review these consequences with
emphasis on forecasting migration rates.

 

 

 

All models are caricatures – there is no correct model.
But useful models can be parameterized to capture the
important features of a process within a restricted
domain. Deficient models miss key processes, and may
consequently yield misleading forecasts. In the context
of migration, sub-models used to define the life history
and dispersal parameters are uncertain, because the
many processes that affect seed dispersal, establish-
ment, survival, growth and reproduction might be
poorly understood. For example, a deficient model
might miss the fact that the life history involves a seed
bank with an extended dormancy phase. Migration
model uncertainty can be reduced by research into the
processes influencing demographic rates and dispersal
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distances and by ensuring that our understanding of
these processes is adequately translated into the model.

The potential for migration model deficiency is high
in the dispersal sub-model. A dispersal kernel might
be wrong due to failure to recognize an important
dispersal process. This is an acute problem when one
considers that the seeds of most plant species are
moved by multiple dispersal processes (Ridley 1930).
For instance, seeds with morphologies that suggest
they are wind dispersed are occasionally moved long
distances by animals, and seeds with morphologies that
suggest animal dispersal can be moved long distances
by wind (Wilkinson 1997; Higgins 

 

et al

 

. in press). The
level of detail in dispersal models depends on available
information and on the goals of the analysis. Rare long
distance dispersal events are difficult, but not impos-
sible, to study systematically (Cain 

 

et al

 

. 2000; Higgins

 

et al

 

. in press). However, even detailed study of  rare
dispersal events often only marginally narrows the
confidence intervals of rate of spread predictions
(Clark 

 

et al

 

. in press).
Nonetheless, some types of large scale dispersal

processes have yielded to systematic study and in recent
years significant advances have been made in both phe-
nomenological (describing patterns) and mechanistic
(describing processes) models for long distance dis-
persal. For wind dispersed seeds, phenomenological
studies have observed and described the tail of  the
dispersal distribution (Greene & Johnson 1995; Bullock
& Clarke 2000), and mechanistic studies have success-
fully simulated the effects of updrafts that influence
long distance dispersal (examples are Nathan 

 

et al

 

.
2002b; Tackenberg in press). These more recent mechan-
istic studies have shown that long distance dispersal
is most strongly influenced by wind properties (par-
ticularly updrafts). Plant traits such as propagule
morphology and height of seed release are of lesser
importance. For dispersal by animals, the outcome of
animal movement, seed retention and seed deposition
are difficult to observe (Fragoso 1997). Hence few
phenomenological studies exist (examples are Yumoto

 

et al

 

. 1998; Wenny 2000). Mechanistic models of animal
dispersal are also poorly developed, perhaps because
the environmental and behavioural factors influencing
animal movement are so varied that these models are
often case-specific (examples are Sun 

 

et al

 

. 1997; Hickey

 

et al

 

. 1999; Westcott & Graham 2000). However, com-
bining information on the scale of animal movement
and seed retention (e.g. Higgins 

 

et al

 

. in press; Powell &
Zimmermann in press) could provide a general way to
generate dispersal kernels for animal dispersed seeds.
Molecular methods also provide a promising avenue
for estimating long-distance dispersal (Cain 

 

et al

 

. 2000;
Godoy & Jordano 2001) although how widely applicable
such methods are remains unclear (Rousset 2001).

An important aspect of model uncertainty is how we
combine the dispersal and demographic sub-models.
In this context it is worth repeating that the dispersal
kernel in migration models is the distribution of

surviving recruits and not merely the distribution of
seed dispersal distances. Most migration models are
based on seed dispersal data and assume that seed
germination and seedling survivorship do not change
with distance from the parent plant. However, seed
germination and survivorship rates can be higher
further away from the parent plant – the ‘Janzen–
Connell’ effect (Janzen 1970; Connell 1971; Clark &
Clark 1984). Hence in a Janzen–Connell world, where
seedling survivorship increases with distance from the
parent, we would expect fatter-tailed dispersal kernels.
Janzen–Connell effects may also operate at a biogeo-
graphical scale. For instance, in some plant invasions
seed production in the novel environment is orders of
magnitude higher than in the home environment. This
phenomenon is often attributed to predator release
(Honig 

 

et al

 

. 1992). Another source of model uncer-
tainty that may counteract Janzen–Connell effects are
Allee effects. Individuals in small isolated populations
may have lower reproductive rates than those in larger
populations, due, for instance to the lower likelihood of
receiving out-crossed pollen (Groom 1998). Although
most migration models ignore Allee effects, these may
act to retard spread rates when migration rate is driven
by occasional long distance dispersal events (Keitt

 

et al

 

. 2001).
Establishment success may also vary as a function of

environmental variables that are not correlated with
distance from the parent plant. This may be due to
microsite quality, or to habitat changes that occur
within a plant’s seed shadow. Similarly, directed and
anisotropic dispersal may obscure the relationship
between distance and recruitment rates. Most migra-
tion models do not consider variation in environmental
conditions, directed dispersal or anisotropic dispersal
effects. Accounting for environmental factors that are
not correlated with distance from the parent plant may
often necessitate the use of spatially explicit models.

 

 

 

Parameter uncertainty is a measure of  how sensitive
the likelihood of a parameter estimate is to changes in
the parameter estimate. Parameter estimates are uncer-
tain when sampling is limited. Moreover, parameter
estimates are only as good as the statistical models
used to estimate them – that is, parameter estimation
cannot be divorced from model uncertainty. Statistical
models require appropriate specification of the ecolo-
gical processes, sources of error in these processes, and
observation error. Provided the statistical model is
adequate, parameter uncertainty is reduced by more
sampling.

Statistical modelling of  empirical data typically
provides a limited amount of information on dispersal
parameters. This is because dispersal sampling is often
limited to short distances. When sampling strategies
include long distances, the high variance in the pro-
cesses generating long distance dispersal means that
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parameter estimates remain uncertain, even for very
large sample sizes. Parameter estimates can be improved
by designing sampling strategies geared towards
sampling the variance in dispersal processes (Higgins

 

et al

 

. 2003). Such a sampling strategy may involve
sampling dispersal distances in many different envir-
onmental contexts. Stratifying sampling effort in this
way can reduce the overall sampling effort significantly
(Greene & Calogeropoulos 2002). In mechanistic
models parameter uncertainty in the driving variables
(e.g. release height, wind velocity or gut retention time)
can be considerable. While the effort required to esti-
mate parameters for mechanistic models may seem
prohibitive, new techniques for tracking animal move-
ment (Webster 

 

et al

 

. 2002) or recording wind behaviour
(Nathan 

 

et al

 

. 2002b; Tackenberg in press) provide
cause for optimism that difficulties can be overcome.

Dispersal studies do not routinely include informa-
tion on how survivorship varies with distance from the
seed source (e.g. Augspurger & Kitajima 1992; Wenny
2000). Our almost complete ignorance in this regard
suggests that this may be the overwhelming component
of parameter uncertainty. Migration forecasts are also
constrained by uncertainty in parameters that describe
demographic processes. Fecundity is the demographic
parameter that is particularly uncertain. For example,
Clark 

 

et al

 

. (1999) have shown that 10 years of fecun-
dity data may be needed for parameter estimates of
fecundity to stabilize.

 

 

 

Inherent uncertainty can be expected to be large when
stochastic processes with high variance influence the
response variable. Inherent uncertainty cannot be
reduced by improving model or parameter uncertainty.
For migration rate, inherent uncertainty is particularly
large for populations with fat-tailed dispersal kernels.
This problem is compounded when R

 

0

 

 is large. Large
R

 

0

 

 and fat-tailed kernels together result in uncertain
forecasts that cannot be appreciably improved by
improving parameter estimates or model structure
(Clark 

 

et al

 

. in press).

 

Managing uncertainty in forecasts of spread rates

 

Forecasts of required migration rates are needed to
address questions such as: will this species be able to
spread fast enough to avoid extinction? Or, what pro-
portion of this species’ climatically defined range will it
occupy? These questions in turn assume that we know
the current range of a species and have a forecast of its
future range. Forecasting future ranges has its own set
of assumptions and uncertainties (Huntley 

 

et al

 

. 1995;
Rutherford 

 

et al

 

. 1995; Schwartz 

 

et al

 

. 2001; Bakkenes

 

et al

 

. 2002; Hannah 

 

et al

 

. 2002), the discussion of which
is beyond the scope of this paper. However, forecasts of
range shifts provide essential context for interpreting
forecasts of migration rates. To be useful to migration

modellers, however, range shift forecasts need to be
translated into required migration rates (RMR). RMR
can be defined in various ways; for instance, as the
migration rate required by a species to be present in its
future climatic range under a changing climate, or
alternatively as the migration rate required by a species
to occupy its entire future climatic range. The first
definition may be more appropriate for assessments of
biodiversity change, whereas the second definition
may be more appropriate for assessments of carbon
balances. Currently very few studies that use climate
change scenarios to forecast climatically defined ranges
of species report required migration rates, something
that could be easily remedied.

Once we have an estimate of the required migration
rate we can attempt to forecast a potential migration
rate. As an example we consider three species invasive
to South Africa. Using data on the distribution of
parent plants and seedlings collected by Higgins 

 

et al

 

.
(2001) we use an inverse method (Ribbens 

 

et al

 

. 1994)
to estimate the parameters of a log-normal kernel and
R

 

0

 

. Using these parameter estimates and assuming a
generation time of 12 years, which corresponds to the
return interval of mortality-inducing fires, we use com-
puter simulations to forecast migration rates for these
three populations. Figure 1 shows how uncertainty in
the parameter estimates propagates through to the
forecasts. For 

 

Acacia saligna

 

 there is very high uncer-
tainty in R

 

0

 

. This translates into excessive uncertainty
in the forecast migration rates. This high parameter
uncertainty may be interpreted as evidence of model
uncertainty. For instance, the sampling design assumed
that seeds do not persist between generations. However

 

Acacia saligna

 

 is known to form seedbanks, and some
sampled sites may have had intergenerational seed-
banks. For 

 

Pinus pinaster

 

 there is less uncertainty in
the estimates of  R

 

0

 

, but considerable uncertainty in
the estimated kernel. In particular, the location of the
modal dispersal distance is uncertain. The sample
included both closed and open stands of 

 

Pinus pinaster

 

– it is plausible that the mode is closer to the source in
closed stands than in open stands. This uncertainty in
the kernel results in high parameter uncertainty in the
forecast migration rate, while the fact that the kernel is
relatively fat-tailed produces considerable inherent
uncertainty in the forecast migration rate. For 

 

Acacia
cyclops

 

 there is low uncertainty in the dispersal kernel
and moderate uncertainty in R

 

0

 

. The kernel is also not
fat-tailed, hence inherent uncertainty in the forecast
migration rates is low. Uncertainty in R

 

0

 

, however,
means that uncertainty in the migration rate due to
parameter uncertainty is significant.

In these examples (Fig. 1) we have assumed that
inherent uncertainty can be calculated as uncertainty
in the forecasts made using the maximum likelihood
parameter estimates. If  our maximum likelihood
estimate (MLE) suggests a fat-tailed kernel we will
forecast high inherent uncertainty. However if  the MLE
suggests a kernel with a rapidly decaying tail we will
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forecast no inherent uncertainty. Hence the estimate
of inherent uncertainty is conditional on the MLE
being true. Although the MLE should move towards
the true value as sample size increases, when dispersal
is fat-tailed even large sample sizes will not eliminate
parameter uncertainty.

Few estimates of plant migration rates exist and even
fewer estimates include an assessment of how uncer-
tainty in model selection and parameter estimates
influences the forecasts (Clark 

 

et al

 

. in press). Moreover,
because of rapid developments in theory and tech-
niques for forecasting migration rates, the few estimates
that do exist are developed using different approaches.
This makes comparison and synthesis difficult. Syn-
thesis and comparison could be improved by using
a standard model to report spread rates. However,
because studies differ in their objectives and available
information we cannot expect that one ‘standard’ model
is universally appropriate. Nonetheless, we believe that
almost all migration models can be reduced to the
special case where the migration rate is defined by the
aggregate parameters f(x), R

 

0

 

, T or merely by f(x) and

 

λ

 

 (the finite rate of increase). In more realistic models
that explore the interactive effects of demographic
processes, disturbance, resource supply, and habitat
distribution on migration rates , R

 

0

 

, T and f(x) can be
estimated from the model’s outputs. Many functional
forms of f(x) are appropriate for describing dispersal,
these cannot be accommodated by a single analytical
framework, suggesting that computer simulations will
often be necessary to generate migration rates.

 

Future challenges

 

The models we have described make many simplifying
assumptions. We think it prudent to draw attention to
the potential implications of some of these assump-
tions. Perhaps most notably, our discussion has ignored
the importance of the density and distribution of suit-
able habitat. Because the behaviours of dispersal agents
are strongly influenced by landscape structure, dispersal
distances can be highly variable in different landscapes.
For example, wind dispersal in a forest yields much
shorter dispersal distances than wind dispersal in a

Fig. 1 Error propagation for estimates of migration rates for three species invasive to South Africa (data from Higgins et al. 2001).
Inverse methods (Ribbens et al. 1994) were used to estimate the parameters of a log-normal kernel and R0. Non-parametric
bootstrap was used to estimate the confidence intervals of these parameters. Using these parameter estimates and assuming a
generation time of 12 years, which corresponds to the return interval of mortality-inducing fires, we use computer simulation to
forecast migration rates for these three populations. The left panels show the maximum likelihood estimates (MLE) of the
dispersal kernels (solid lines) and their 90% confidence intervals (shaded areas). The central panels show the MLE estimates of
R0 (horizontal lines) and their 90% confidence intervals (shaded boxes). The right panels show the forecast migrate rates. The
black-shaded areas represent the inherent uncertainty in the migration forecast, assumed to be the 90% confidence intervals of
forecasts made using the maximum likelihood parameter estimates. The grey-shaded areas represent the parameter uncertainty
in the migration forecasts, assumed to be the 90% confidence intervals of forecasts made using the bootstrapped parameter
estimates.
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grassland (Nathan 

 

et al

 

. 2002a). Also, the arrangement
of barriers to dispersal processes influences dispersal
distances and migration rates. However techniques for
describing such effects are not well established (Pitelka

 

et al

 

. 1997; Collingham & Huntley 2000; Higgins 

 

et al

 

.
2003).

We also assumed that plant traits affecting fecundity
and dispersal mechanisms will not change over time.
However, evolutionary responses may be quick, e.g.
species arriving on islands have been observed to
rapidly reduce their ability to disperse (Cody & Overton
1996). Because the current wave of climate change is
combined with habitat loss and fragmentation, selec-
tion may be against long-distance dispersal, because in
fragmented landscapes the risk of dispersal to unsuit-
able habitat increases with increasing dispersal dis-
tance (Cody & Overton 1996; Hovestadt 

 

et al

 

. 2001). In
addition, we cannot exclude the possibility that local
adaptation to new climatic conditions may reduce
the need to spread, or that plant pests may respond
independently to climate change.

 

Conclusions

 

Forecasting migration rates for plants is fraught with
many uncertainties. We have argued that we can coher-
ently acknowledge many of these uncertainties. Such
acknowledgement is an important first step for defining
a research agenda that directs effort to processes where
uncertainty can be reduced. We advocate caution when
devoting effort to studying long-distance dispersal,
as the uncertainties involved may be inherently
overwhelming. We also advocate closer co-operation
between researchers forecasting changes in climatic
ranges and researchers forecasting migration rates.
Such co-operation will allow us to direct migration
research towards species that are threatened by climate
change and species that have expanding climatic
ranges.
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