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■ Abstract Models of seed dispersal—a key process in plant spatial dynamics—
have played a fundamental role in representing dispersal patterns, investigating disper-
sal processes, elucidating the consequences of dispersal for populations and commu-
nities, and explaining dispersal evolution. Mechanistic models of seed dispersal have
explained seed dispersion patterns expected under different conditions, and illuminated
the circumstances that lead to long-distance dispersal in particular. Phenomenological
models have allowed us to describe dispersal pattern and can be incorporated into
models of the implications of dispersal. Perhaps most notably, population and com-
munity models have shown that not only mean dispersal distances but also the entire
distribution of dispersal distances are critical to range expansion rates, recruitment pat-
terns, genetic structure, metapopulation dynamics, and ultimately community diversity
at different scales. Here, we review these developments, and provide suggestions for
further research.

∗Order of the last three authors was determined by a random-number generator.
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This paper explores three models of seed dispersal - mechanistic, phenomenological, and community models - each of which elucidates different aspects of dispersal



17 Oct 2003 16:22 AR AR200-ES34-21.tex AR200-ES34-21.sgm LaTeX2e(2002/01/18)P1: GCE

576 LEVIN ET AL.

INTRODUCTION

Dispersal is defined as the unidirectional movement of an organism away from
its place of birth. In sedentary organisms such as all plants and some animals,
dispersal is mostly confined to a short early stage of the life cycle. In higher
plants, individuals move in space mostly as seeds. Many plant species can also
move through vegetative growth, but this kind of movement is not as common
and typically induces relatively minor spatial change. Although nonvegetative
dispersal units can be diverse and can be more appropriately described by more
specific botanical terms (see van der Pijl 1982), here we use the term seed dispersal
as a general expression for the dispersal of the reproductive unit of a plant.

To understand dispersal, we need to measure its spatial patterns, to explore the
mechanisms that generate them, and to examine their consequences. We thus start
with an overview of the empirical evidence for patterns and processes of dispersal
and then discuss models describing these. The theoretical implications and expla-
nations of dispersal are discussed in subsequent sections, starting with population
spread, moving briefly through other aspects of population and community dy-
namics, to the evolution of dispersal. We end with a synthesis of main conclusions
and directions for future research.

SEED DISPERSAL PATTERNS AND PROCESSES

Dispersal Mechanisms

The great variety of dispersal-aiding morphologies attracted the attention of natu-
ralists as early as Aristotle (384–322 BC) and Theophrastus (371–286 BC) (Thanos
1994). For a long time, the study of seed dispersal was either anecdotal or spec-
ulative, with attempts to explain the selective value of each and every detail of a
dispersal unit (Ridley 1930, van der Pijl 1982). The most commonly used classifi-
cation system of dispersal syndromes is based on the agent or vector of dispersal,
typically inferred from seed morphology. The principal agents of dispersal are
either abiotic (wind and water) or biotic (animals and the plant itself ), and the
dispersal syndromes are termed, respectively, anemochory, hydrochory, zoochory,
and autochory (van der Pijl 1982).

The vector-based method, and similarly any other classification of dispersal
morphologies, can be refined to account for more subtle differences in the morphol-
ogy of the dispersal unit, its potential dispersers, and adaptive features (van der Pijl
1982). However, as the level of detail in classification increases, the promise of the-
oretical generalization recedes. Furthermore, general classification methods tend to
miss, and even misconstrue, important characteristics of the seed dispersal process.
A key point is that dispersal is seldom mediated by a single dispersal agent and is
not confined to the primary movement of seeds from the plant to the surface (Phase I
dispersal) (Chambers & MacMahon 1994, Watkinson 1978). Rather, it also entails
subsequent movements (Phase II dispersal) that can be mediated by other dispersal
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agents. The common practice of using the morphological dispersal syndrome to
distinguish short- from long-distance dispersal is therefore questionable. In fact,
the actual processes responsible for long-distance dispersal (LDD) are only loosely
correlated with those interpreted from seed morphology (Higgins et al. 2003).

A second major limitation of traditional classification schemes stems from the
ambiguous relationships between the morphological dispersal syndrome and the
contribution of the dispersal process to plant fitness (disperser effectiveness sensu
Schupp 1993). Dispersal agents, even within restrictively classified groups, differ
markedly in their effectiveness both quantitatively (numbers and distances of dis-
persed seeds) and qualitatively (treatment and deposition of seeds) (Schupp 1993).
An extreme example for the importance of the quality of the dispersal agents is
directed dispersal, or the disproportionate arrival of seeds to favored establishment
sites in which survival is relatively high (Howe & Smallwood 1982). Wenny (2001)
provides many examples and a thorough discussion of this phenomenon, which
seems to be more common than previously believed.

Spatial Patterns

Dispersal is encapsulated in the seed dispersion pattern (Nathan & Muller-Landau
2000), most commonly measured in a two-dimensional setting, though it can also
be measured in one (e.g., Th´ebaud & Debussche 1991) or three (Nathan et al.
2002b, Tackenberg 2003) spatial dimensions.

Seed dispersion patterns depend on adult dispersion patterns, their geometry
and fecundity, and on the variation in the direction and distance of dispersal events.
As such, they can be very complex, hence difficult to quantify. The most common
practice utilizes a ground network of seed traps (Greene & Calogeropoulos 2002);
direct observations (e.g., Watkinson 1978) and genetic analyses (e.g., Godoy &
Jordano 2001) are used much less frequently. Dispersal studies usually cover an
area where most, but not all, dispersal occurs. Quantifying seed dispersion patterns
at increasingly large scales is exceedingly more difficult because more uncertainty
is associated not only with the fate of rare events but even with the identity of
the mechanisms operating at these scales (Higgins et al. 2003). The seed trap
method soon becomes unfeasible because of the extremely huge sampling area
required to detect rare LDD events (Greene & Calogeropoulos 2002). Thus, the
quantification of LDD is extremely challenging (Cain et al. 2000, Nathan et al.
2003). Unconventional methods that focus on individual movements and methods
that couple modeling and empirical tools are the most promising ways to estimate
LDD; see Greene & Calogeropoulos (2002), Nathan et al. (2003), Wang & Smith
(2002) for recent reviews.

Seed dispersion patterns reflect the totality of all individual dispersal events in
a population, whereas the dispersal curve summarizes the distribution of distances
traveled by seeds. Dispersal curves can in principle form any kind of distribution;
cases of directed dispersal discussed above, for example, may generate complex
multimodal dispersal curves (Schupp et al. 2002). The majority of empirical seed
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dispersal data, however, fit a relatively simple, unimodal leptokurtic distribution,
characterized by a peak at or close to the source, followed by a rapid decline and a
long, relatively “fat” tail (Kot et al. 1996, Willson 1993). In the following section,
we define relevant terms and discuss the mathematics of dispersal curves.

Many studies evaluate dispersal based on postdispersal (seedlings, young plants,
or even adults) dispersion patterns. Although this kind of data can be collected in
a cost-effective manner, it may not provide a reliable way to reconstruct disper-
sal. This is because data interpretation should address uncertainties involved not
only with dispersal, but also with predispersal (e.g., pollination, seed production,
and predispersal seed loss), and postdispersal (e.g., seed predation, germination,
and seedling competition) processes (Nathan & Muller-Landau 2000, Schupp &
Fuentes 1995). Such coupling is especially challenging for large-scale studies, with
virtually no information available on establishment processes that follow LDD
(Nathan 2001), despite their crucial importance for plant population dynamics.

THEORETICAL MODELS OF SEED DISPERSAL

Phenomenological Models

Ultimately, we argue that understanding of dispersal requires the development of
mechanistic models that can explain observed patterns. We begin, however, with
a characterization of those patterns through purely phenomenological models.

SEED DISPERSAL CURVES Data on dispersal can be represented either by the fre-
quency distribution of dispersal distances or by the two-dimensional distance func-
tion of postdispersal seed densities. The two types have been coined, respectively,
distance distribution and dispersal kernel (Nathan & Muller-Landau 2000), or one-
and two-dimensional probability density functions (Cousens & Rawlinson 2001).

Mathematically, a dispersal kernel is expressed in Cartesian coordinates by
P(x, y)dxdy, the probability that a seed released at point (0, 0) lands in a square
of sizedxdycentered at the deposition site (x, y). Given the symmetries in this
problem, it is easier to deal with polar coordinatesr, θ , wherer =

√
x2+ y2 is

the distance between the release point and the deposition site, andθ is the radial
angle. If dispersal is isotropic, the probability of landing in an annulus of width
dr at a distancer from the point source is 2π rP(r)dr. In certain cases, dispersal is
directed along one preferential direction, and it can be suitably modeled as a one-
dimensional process. Then,P(x)dx is the probability that a seed starting at point
0 lands in the segment of lengthdx centered atx. It is assumed throughout this
section that one-dimensional kernels are functions ofx, while two-dimensional
kernels are functions ofr. Theseed shadow N(x) is the product of the dispersal
kernelP and the total number of seeds dispersed8.

Dispersal curves can be estimated from seed dispersion patterns by taking into
account the location, geometry, and fecundity of adults, and the directionality of
the dispersal process, though the latter is usually ignored. A general problem with
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such estimation is the identification of the specific source location of dispersed
seeds. This has led researchers to select isolated individuals so that the seed source
location is not ambiguous (e.g., Lamont 1985). However, more generally, adult
plants tend to form conspecific aggregations; hence, seed shadows of neighboring
individuals typically overlap. Methods for resolving the overlapping seed shadow
problem are discussed in Clark et al. (1998b, 1999), Nathan & Muller-Landau
(2000), and Ribbens et al. (1994).

Traditionally, three functional forms for the distance distribution were com-
monly fitted to dispersal data: the Gaussian, the negative exponential, and the
inverse power law. The Gaussian distribution is well defined but does not fit the
leptokurtic distributions that are commonly observed. The negative exponential,
probably the most commonly used functional form, has a fatter tail, but not fat
enough to accommodate many LDD data. The inverse power law has a fat tail, but
P(r) = a/rβ goes to infinity asr goes to zero (ifβ > 0); hence only functions
such asP(r) = a/(1+ br)β can be used as general forms for dispersal kernels. A
general parametric formulation encompassing all these models is

P(r ) = a

r β
exp(−brα) = a exp(−brα − β ln(r )), (1)

wherea, b, α, andβ are parameters (Turchin 1998, p. 200). Recent studies have
proposed fat-tailed distributions such as the (two-dimensional Studentt) 2Dt (Clark
et al. 1999)

P(r ) = a(1+ br2)−α. (2)

Forα= 1, this is the Cauchy distribution (Shaw 1995). These dispersal kernels are
strongly leptokurtic, with a disproportionately large fraction of the seeds dispersed
far.

Short- and long-distance dispersal can be associated with different dispersal
mechanisms (see Seed Dispersal Patterns and Processes above); hence the overall
distribution of dispersal distances in a population may be best represented by
stratified modeling, i.e., mixing several dispersal kernels such as two exponential
distributions (Higgins & Cain 2002).

MOTIVATION OF MODEL FORMS Phenomenological models are chosen mainly—
if not entirely—on their ability to fit the data. However, particular modeling forms
can also be justified by general assumptions about the dispersal process. The
simplest example rests on a homogeneous deposition model, which implies an
exponential dispersal kernel. In one space dimension, assume that a fractionρ of
the dispersed seeds that have not yet settled are deposited betweenx andx+ dx,
while the remaining fraction are dispersed further. This yields a differential equa-
tion for P(x), dP(x)/dx = −ρP(x), whose solution on the half-linex ≥ 0 is the
exponential

P(x) = ρ exp(−ρx). (3)

with mean dispersal distanceL equal to 1/ρ.
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A simple generalization of the decay model introduces a distance-dependent
decay rate, such that (in two dimensions) at pointr, a seed lands at rateρ(r ) ∼ r α−2.
In other words, the deposition rate decreases with distance from the release point
if α < 1, and it increases with the distance from the release point ifα > 1. This
produces the distribution

P(r ) = a exp(−brα), r > 0. (4)

This corresponds to Equation 1 forβ = 0 and has been suggested by many
authors (Clark et al. 1998b, Ribbens et al. 1994, Taylor 1978, Turchin 1998) as
a practical generalization of the exponential and Gaussian models. The particular
form of the decay rate could be interpreted as an intrinsic property of the disperser:
the smaller the parameterα, the fatter the tail of the distribution. This could cor-
respond, for example, to changes in the behavior of an animal disperser, which
deposits more seeds near parent plants than far from them (even corrected for the
area effect).

Mechanistic Models

Beyond simply justifying particular forms for phenomenological models, truly
mechanistic models of seed dispersal can predict exact seed distributions (including
parameter values of dispersal curves) from characteristics of the dispersal process.
Mechanistic models of seed dispersal by wind have a long history, building upon
available theory on wind advection. Models of seed dispersal by animals are less
well developed in large part because such models require quantification of detailed
behavioral information.

MODELS OF SEED DISPERSAL BY WIND Modeling the movement of seeds dis-
persed by wind is analogous to modeling the movement of pollen, fungal spores,
particulate pollution, etc.; thus the methodology from other fields, especially fluid
dynamics, can be applied directly. One relevant set of models are plume models,
specifically the tilted Gaussian plume model developed by Okubo & Levin (1989)
and related work by Greene & Johnson (1989).

The tilted Gaussian plume model incorporates the joint influences of wind
advection and gravity on seed movement (Okubo & Levin 1989). Advection is
characterized by the horizontal velocityu (in one dimension), and seeds fall at a
terminal velocityVt that reflects the balance between gravity and friction (Greene &
Johnson 1989). Seeds are released from a point of heightH, disperse under the
influences of diffusion and advection, and thus follow wind movement like a plume.
If seed movement were entirely deterministic, then it would be determined entirely
by wind speed, the height of release, and terminal velocity (Nathan et al. 2001 and
references therein):

x = Hu/Vt . (5)

The dispersal kernel thus peaks atx. This case ignores vertical, latitudinal, and
longitudinal variation in wind speed. Of course, in reality, stochastic effects due to
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fluctuations in wind speed lead to much greater variation in dispersal distances and
cause the dispersal kernel to widen. Pasquill & Smith (1983) incorporated some of
this variation by considering not only advection by wind along directionx, but also
diffusion along they andzaxes (respectively, cross-wind and vertical directions).
They were interested in the final surface distribution of light particles—particles
for which the influence of gravity could be ignored (see Okubo et al. 2001a for a
recent review).

Okubo & Levin (1989) modified this example to include the influence of grav-
ity, which becomes important for heavier particles and seeds. To take account of
nonzero terminal velocity,Vt, they replaced the height termH by the expected
height at distancex, that is H − Vt x/u. They derived a cross-wind integrated
distribution that corresponds to the solution of the deterministic model mentioned
above when the variance in vertical wind speedσ 2

w goes to zero. Okubo & Levin
(1989) further assumed thatt = x/u because the seeds are displaced at constant
velocityu along thex axis. Thus, the tilted Gaussian plume model takes the form

P(x) = Vt√
2πuσw

exp

(
− (H − Vt x/u)2

2σ 2
w

)
. (6)

This assumes that the parameters are constant in time, uniform in space, and
do not vary from one seed to another. However, in reality, such variability is
substantial and has important consequences for dispersal. For example, the shape
of a wind-dispersal kernel will be very different if horizontal wind speed is assumed
constant or to vary like Brownian motion with drift. In this example, if the wind
speed varies around its mean much faster than the duration of the seed’s flight, then
standard tools from the theory of Brownian motion can be invoked (see below).
Greene & Johnson (1989) suggested a simple generalization of the ballistic wind
dispersal model (Equation 5) in which different seeds experience different wind
speeds. Further, they suggested the lognormal distribution as an empirical fit to the
distribution of wind speeds. From that, they deduced the one-dimensional dispersal
kernel

P(x) = 1

x
√

2πσu

exp

(
− (ln(Vt x/ugH ))2

2σ 2
u

)
. (7)

Here, ug and σ 2
u denote, respectively, the geometric mean and the variance of

horizontal wind velocityu.
Spatial variation in wind speed and direction is another important issue. For ex-

ample, horizontal wind speed is usually a function of height that increases roughly
exponentially within a plant canopy and logarithmically above it. The influence of
this vertical wind profile is discussed in Nathan et al. (2002a) in the context of the
seed dispersal simulator WINDISPER (Nathan et al. 2001). WINDISPER assumes
a lognormal distribution of horizontal wind speedsu, and Gaussian distributions
of vertical wind speedsw (truncated to exclude net upward movements), height
of releaseH, and seed terminal velocityVt. For either a logarithmic (for trees in
open landscapes) or an exponential (for trees within a dense forest) wind profile,
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there is an analytical solution for the distance traveled by an individual seed under
any combination of parameter values (Nathan et al. 2002a).

The above models provide insights into dispersal processes in various ways.
Increasing model complexity and relaxing critical structural assumptions expose
different layers of dispersal processes. Okubo & Levin (1989) showed that the
horizontal wind speed, seed terminal velocity, and release height are the key de-
terminants of short-distance dispersal; and there is no need to increase model
complexity if the goal is to predict the local dispersal of most seeds. Nathan et al.
(2001) showed that, empirically, these factors vary considerably in their relative
effects. The variation in wind speed components explained most (86%) of the vari-
ation in dispersal distances ofPinus halepensisseeds at their study site, whereas
variation in the two biological parameters (Vt andH) together explained much less
(9%). Wind dispersal models should therefore include accurate estimates of wind
conditions. Moreover, seeds of isolated trees are expected to travel much farther
than identical seeds released from identical trees within a dense forest. These dif-
ferences have important implications for tree dynamics at small and large scales
(Nathan et al. 2002a).

Whereas all the above models closely match the observed dispersal data at the
local scale, their relevance to LDD has been questioned (Bullock & Clarke 2000,
Greene & Johnson 1995, Nathan et al. 2002a). This is because LDD of tree seeds,
for example, critically depends on the fine details of turbulence structure within the
forest. Nathan et al. (2002b) applied a coupled Eulerian-Lagrangian approach to
model the three-dimensional flight trajectories of wind-dispersed tree seeds within
and above the forest canopy. Their approach resolves the effects of canopy turbu-
lence and explicitly incorporates excursions whose timescales are on the order of
seconds. This model was parameterized from high-frequency wind measurement
data for a site at Duke Forest and tested against dispersal data collected along a 45-m
tower. Predictions closely matched observed data for five wind-dispersed tree
species. This study revealed the crucial role for LDD of seed uplifting, by turbulent
wind updrafts that result in temporally and spatially autocorrelated deviations in
vertical wind velocity. Tackenberg (2003), using a stochastic Lagrangian simulator
of seed flight, fed with observed sequences of high-frequency wind measurements,
demonstrated that uplifting was also critical for LDD of grass seeds and concluded
that LDD in grasslands is promoted by thermal updrafts.

Variation in horizontal and vertical wind speeds can be incorporated along with
most of the features of the above models into a unifying random walk model of
wind dispersal. It has all the same properties of WINDISPER apart from account-
ing for variable vertical wind profile yet is also analytically tractable (Portnoy &
Willson 1993, Tufto et al. 1997, Turchin 1998). To compute the dispersal kernel in
the one-dimensional case, assume that the seeds perform a biased Brownian motion
vertically starting from a release point at heightH. As before, seeds are dispersed
by wind. Assume a downwind dispersal velocityu with variance (per unit time)
in distance traveledσ 2

u and vertical mean wind speedw with varianceσ 2
w. Using

Brownian motion theory (Karlin & Taylor 1981), one can find the distribution of
deposition timesP(t):
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P̂(t) =
√

H2

2πσ 2
wt3

exp

(
− 1

2σ 2
wt

(H − wt)2

)
. (8)

The dispersal kernel is obtained from the distribution of deposition times by
the equation

P(x) =
∞∫

t=0

P̂(t)p(x, t) dt, (9)

(see also Tufto et al. 1997, Equation 12), which yields

P(x) = H

πσuσw
exp

(
xu

σ 2
u

+ Hw

σ 2
w

)√
u2σ 2

w + w2σ 2
u

x2σ 2
w + H2σ 2

u

× K1

((
x2

σ 2
u

+ H2

σ 2
w

)1/2(
u2

σ 2
u

+ w
2

σ 2
w

)1/2
)
, (10)

whereK1(x) is the modified Bessel function of the second kind (Gradshteyn &
Ryzhik 2000). Yamamura (2002) showed that if one assumes that the distribu-
tion of deposition times (Equation 8) is a gamma distribution, the dispersal kernel
is also a Bessel function. This model has many different limiting behaviors as
the parameters are varied. Ifσ 2

u goes to zero, the deterministic formula is recov-
ered. To analyze this model further, introduce the nondimensional variables:ρ =
uH/σ 2

u , η = wσ 2
u/uσ

2
w, ϕ = w/u, X = x/H, and Xc = ρ−1(

√
1+ ηϕ − 1)−1.

For large distances, the dispersal kernel isP(X) ∼ X−3/2 exp(−X/Xc).When the
distanceXc gets very large, thenP(X) ∼ X−3/2.

Portnoy & Willson (1993) developed the more difficult case of a two-dimensi-
onal, radially symmetric model with a horizontal drift velocityu and a horizontal
noise term described by the varianceσ 2

u . The two-dimensional model leads es-
sentially to the same results as the one-dimensional model. With nondimensional
parameterization defined byρ, η, andϕ as above, andR= r/H , their result is

P(R) = I0(ρR)
ρR√

R2η + ϕ

(
1

R2ρ + ρηϕ−1
+
√

1+ ηϕ
R2+ ηϕ−1

)

× exp
(
ρη − ρ

√
(1+ ηϕη)(R2+ ηϕ−1)

)
, (11)

where I0(a) is the modified Bessel function of the first kind, which behaves as
I0(a) ≈ (2πa)−1/2 exp(a) (to within 5% for a > 4). We can also develop this
expression for large values ofR, and the dominant behavior is similar to that in the
one-dimensional case.

MODELS OF SEED DISPERSAL BY ANIMALS Skellam (1951) demonstrated that
wind dispersal was inadequate for explaining observed rates of advance of
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invading species, and that LDD in some cases must have involved animal vectors.
Recent studies (Vellend et al. 2003) reinforce this observation. Typical models
of seed dispersal by animals extend the approach described to combine a com-
ponent describing animal movement and a component describing time until seed
deposition. Such parameters can be estimated from statistical distributions of ob-
served animal movements and gut retention times (or handling times, etc.) (Murray
1988). More mechanistic approaches seek to understand the rules that govern an-
imal movements and feeding behaviors (Anderson 1982, Kareiva 1990, Neubert
et al. 1995).

A very simple theoretical model of dispersal by animals makes the assumptions
that (a) animals move randomly in space, and (b) deposit seeds at a constant rate
during their movement. Again, the probability of displacement by a distancer of
an animalt time units after it has picked up a seed follows a Gaussian distribution.
The distribution of deposition times is given by an exponential functionP(t) =
ρ exp(−ρt), ρ being the deposition rate as above. The resulting seed dispersal ker-
nel, again, is obtained through Equation 9 (Broadbent & Kendall 1953, Turchin &
Thoeny 1993):

P(r ) = ρ

2πD
K0

(
r

√
ρ

D

)
, (12)

whereD is the diffusion rate for the dispersers (the animals). More complicated
models could be constructed to include effects of landscape structure and variable
deposition rates.

Model Assessment

A critical step in the development of models is the assessment of reliability of
their assumptions and predictions. Model assessment should include evaluation of
four components: structural assumptions, parameter estimates, and primary and
secondary predictions (Bart 1995). In phenomenological models, structural as-
sumptions involve, for example, the type of function and whether or not to mix
two functions. In mechanistic models, structural assumptions involve, for exam-
ple, whether seeds are dispersed under exponential or logarithmic wind profiles
and whether seeds carried by animals are deposited at random or with some bias.
Parameter estimation is crucial in both phenomenological and mechanistic ap-
proaches. Yet, good estimates for the parameters of a model are necessary but not
sufficient for a good model: Ultimately, model predictions need to be compared
with data. The primary predictions of dispersal models are the dispersal distances
themselves, or more commonly, the predicted postdispersal seed densities or the
proportions of seeds arriving at a seed trap location. Because parameters of mech-
anistic models are evaluated independently of the dispersal data, any dispersal data
could serve to test primary predictions. Phenomenological models, however, neces-
sitate dispersal data for their calibration; but their primary predictions can be tested
against a random subset of the data not used for calibration (i.e., cross-validation).
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Secondary predictions involve indirect features of the system, such as the shape
of the dispersal kernel predicted by mechanistic models.

IMPLICATIONS OF DISPERSAL FOR RATES OF
SPECIES ADVANCE

One of the primary motivations for studying dispersal is to understand the rates of
spread of species (e.g., Okubo & Levin 2001, Turchin 1998). Models linking dis-
persal and rates of advance have a long history in ecology and evolutionary biology.
In this section, we review classical models of species spread, recent extensions of
these models, and empirical tests of the theory.

Classical Diffusion Models

One of the earliest applications of models of dispersal in ecology and evolutionary
biology was to the spread of advantageous alleles. Fisher (1937) first considered
the problem in genetics, writing the equation

∂P

∂t
= D

∂2P

∂x2
+ r P(1− P) (13)

for the frequencyPof the favored allele entering a new (linear) habitat. HereD is the
diffusion coefficient, andr is the intrinsic rate of natural increase. The assumptions
underlying this equation are that individuals move via random walk, in small
steps, with no directional bias, and that population growth is logistic (Okubo &
Levin 2001). In reality, one should write coupled equations for genotypes, since
it is individuals rather than genes that move, and derive Equation 13 from these
equations (Aronson & Weinberger 1978), but the reduced model (13) is a good
approximation.

Based on Equation 13, Fisher reasoned that the eventual (asymptotic) rate of
spread of the allele would be

2
√

Dr. (14)

Kolmogorov et al. (1937) established this result formally, for general growth func-
tionsf(P) (see Okubo et al. 2001b).

In an ecological setting, the seminal paper extending these results was that of
Skellam (1951), who was interested in the rates of advance of invading species.
Skellam embedded the problem in a broader framework that considered more
complicated dispersal kernels in multiple spatial dimensions. He also derived the
equivalent of Equation 13, for the population densityP.

The nonlinear term can be ignored in the determination of asymptotic speeds,
because densities are low enough at the front that growth is essentially exponential.
For more general growth functions, this is also true, but nonlinearities can be
important early in spread if there are multiple possible equilibria, resulting in the
equation
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∂P

∂t
= D

∂2P

∂x2
+ r P. (15)

No real front forms in this case because population size is growing (or declining)
exponentially. Skellam addressed this by assuming that there is a cut-off level P∗

below which either the spreading population would not be detected, or population
density would be too low to sustain spread, and defined the position of the front
as the value(s) ofx where population density equals that threshold. By symmetry,
even in one dimension there will be two such points, and their locations will
advance asymptotically at the speed given in Equation 14. Equation 13 assumes
no bias in movement, such as might arise owing to advective forces like winds or
water flow, or simply tactic movement in the case of animal or microbial dispersal.
For constant advection, the speed is given by Equation 14 relative to a frame of
reference moving with the advection.

In two or three spatial dimensions, the essential problem and conclusions are
the same, at least in homogeneous habitats. The basic equation, in two dimensions,
without advection, is given by

∂P

∂t
= Dx

∂2P

∂x2
+ Dy

∂2P

∂y2
+ f (P). (16)

If diffusion is isotropic, then a point release will eventually spread in circular
fronts, at the speed given by Equation 14; nonisotropic diffusion will lead to
elliptical patterns with different rates of spread in different directions. Without
density dependence, arbitrary initial distributions can be treated as superpositions
of point releases, yielding the same result; with density dependence, the picture
becomes a bit more complicated, and the details again must depend on the specific
form.

Empirical Tests of the Theory

Everything discussed so far relates to the general reaction-diffusion model (e.g.,
Equation 13) and its extensions. How good are the assumptions underlying this
model, and how well do the predictions agree with observations? In general, the
assumption of random walk is a convenience, representing ignorance of local
stochastic factors that determine actual movements. The convenience can be justi-
fied, however, if in some statistical sense, the observed patterns do not differ from
the predictions of the theory.

Skellam examined a number of empirical examples—in particular, the oaks
in England following the recession of the glaciers, and the muskrats introduced
into Bohemia by an incautious Czech prince. Although much of his focus was
in interpreting patterns and mechanisms, Skellam did conclude that the spread of
oaks was too rapid to be explained by simple diffusion, confirming the calculations
of Clement Reid (Clark et al. 1998a, Reid 1899, Turchin 1998). Rates of Holocene
postglacial spread of many temperate tree species were estimated by Davis (1976),
Huntley & Birks (1983), Delcourt & Delcourt (1987), and MacDonald (1993),
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among others. The pollen record shows an individualistic response of tree species,
with average rates of spread on the order of 200 m/yr. Reid’s paradox (Reid 1899,
Skellam 1951) highlights the discrepancy between these estimated high spread
rates, and the observed dispersal distances of nearly all species, which typically
average no more than a few tens of meters. We return to this in Tails and Rates of
Advance of Populations below.

Nonlocal Transport, and Non-Gaussian Kernels

Equation 13 describes a diffusion approximation for a stochastic process, pro-
vided redistribution is the result of a large number of small steps. Alternatively,
redistribution can be treated as a discrete event, with consequences that can be
encapsulated in a single “kernel function.” The approach is especially appropriate
for situations where growth and dispersal occur sequentially rather than simulta-
neously, as for annual plants. Skellam (1951) developed the basic approach, in
which a dispersal kernel represented the probability distribution for the terminal
point of a seed released at a given position. Based on this, one can develop models
of population redistribution while taking into account the details of influences on
individuals. Mollison (1977) showed how consideration of redistribution kernels
with nonlocal transport could change fundamentally the predictions about spread.

In recent years, a number of investigators have built on the framework devel-
oped by Skellam & Mollison. Notable among these have been Weinberger (1978),
Aronson (1985), Fife & McLeod (1977), van den Bosch et al. (1988), van den
Bosch (1990), Kot & Schaffer (1986), Kot et al. (1996), and Neubert et al. (1995,
2000). The simplest model follows annual populations that are sedentary during
most of their lives, such as plants or intertidal sessile invertebrates, and that dis-
perse their propagules at the end of a season. Thus the number of propagulesn
satisfies the equation

nt+1(x) =
∞∫
−∞

φ(x, y) f (nt (y)) dy, (17)

where the kernelφ(x, y) is the probability density function for the endpoint
x of a dispersal event originating aty. Often, but not necessarily,φ = k(x – y),
a function of (x – y) alone. In this case, the probability of dispersing a given dis-
tance is independent of the point of origin (Neubert et al. 2000). The second term
in the integral represents growth between dispersal events, or more precisely the
number of propagules per adult.

The advantage of Equation 17 is thatk need not take the Gaussian form, con-
sistent with diffusive spread, and hence can capture LDD events and multimodal
dispersal. Numerous examples in the plant literature illustrate the inadequacy of the
Gaussian dispersal kernel, and the associated diffusion approximations (Cain et al.
1998; Davis 1976, 1987). Weinberger (1978) showed that, under reasonable con-
ditions, the solutions to Equation 17 again converge to traveling waves, with speed
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c = mins∈S{(ln( f ′0)m(s))/S}. (18)

Here,f ′(0) is the growth rate of the population when it is rare, and

m(s) =
∞∫
−∞

k(x)esxdx (19)

is the moment-generating function for the kernel (Kot 1992; Kot et al. 1996;
Neubert & Caswell 2000; Neubert et al. 2000; Weinberger 1978, 1982).S is the
set of positives for which the integral in Equation 19 converges (Neubert et al.
2000). Furthermore, to assure convergence to a wave front, one further assumes

0≤ f (n) ≤ n f ′(0). (20)

More generally one can consider delays owing to dispersal, overlapping gener-
ations, multiple dimensions, and other complications; but these are beyond the
scope of this review. Equation 17 provides a natural bridge from explicit dispersal
kernels to the problem of spread.

Tails and Rates of Advance of Populations

Whereas most seeds fall near the parent plant, and most larvae disperse short
distances, it is the tail of the dispersal distribution that is of central importance in
the spread of species (Mollison 1977, Skellam 1951, Turchin 1998). Both Skellam
and Mollison emphasized the inadequacy of the diffusion approximation when
long-distance transport is important. Reid’s paradox (see Empirical Tests of the
Theory, above) that rates of spread in the paleontological record far exceed that
expected based on observed mean dispersal distances can be resolved if the tails
of the distribution are sufficiently fat (Clark 1998, Clark et al. 1998a, Higgins &
Richardson 1999).

Skellam (1951) and Mollison (1977) both emphasized the importance of focus-
ing on the dispersal kernel, and all its moments, in the prediction of spread. The
approach has been extended effectively by van den Bosch et al. (1988), van den
Bosch (1990), and Kot et al. (1996). Kot et al. (1996) (see Equation 17) showed
that one should distinguish three types of dispersal kernels, and that the diffusion
approach works only for those with exponentially bounded tails.

IMPLICATIONS OF DISPERSAL FOR POPULATION
DYNAMICS AND COMMUNITY ORGANIZATION

Implications of Dispersal for Population Dynamics

Dispersal plays an important role not only in range expansion (see Implications of
Dispersal for Rates of Species Advance above) but also in determining the spatial
and genetic structure of populations at local and landscape scales.
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LOCAL POPULATION DYNAMICS Dispersal patterns directly affect the spatial struc-
ture of populations, equilibrium population densities, and rates of population dy-
namics. All other things being equal, shorter dispersal distances and more clumped
seed deposition will tend to result in more clumped seedling and adult distributions
(Hamill & Wright 1986), slower rates of exploitation of newly available sites, and
lower equilibrium abundances (Bolker & Pacala 1999). In general, however, these
effects are strongly modified by the spatial pattern of abiotic and biotic influences
on establishment, growth, and survival (Schupp & Fuentes 1995). A species with
long dispersal distances may nonetheless exhibit a clumped spatial distribution
and low equilibrium abundance if the locations in which it can successfully estab-
lish are rare and clumped (Hamill & Wright 1986). Such spatial variation in the
probability of seed success is ubiquitous in plant populations and must be con-
sidered in evaluating the impact of dispersal patterns (Schupp & Fuentes 1995).
This is especially important when the probability of seed deposition itself depends
upon habitat conditions (Nathan & Muller-Landau 2000). Disproportionately high
seed deposition in favorable habitats (so-called “directed dispersal;” see Dispersal
Mechanisms, above) has the potential to enhance greatly recruitment rates and
thereby affect population dynamics (Wenny 2001).

Habitat favorability may itself not only affect but also be affected by the popu-
lation spatial pattern. Proximity to parents or other conspecific adults may impact
recruitment negatively if the activities of seed predators, pathogens, or other nat-
ural enemies are concentrated around parent trees (Connell 1971, Hammond &
Brown 1998, Janzen 1970), or positively if parent trees provide a favorable mi-
croenvironment for recruitment (Tewksbury & Lloyd 2001) or are associated with
higher local availability of mutualists such as mycorrhizae (Wilkinson 1997). Em-
pirical studies have shown that many if not most plant species suffer increased
mortality in areas of higher densities of conspecific seeds, seedlings, or adults
(Harms et al. 2000, HilleRisLambers et al. 2002). Given a particular negative rela-
tionship between conspecific density and survival, the number and spatial pattern
of successful recruits will depend upon seed dispersal patterns. In general, higher
rates of seed dispersal will lead seeds to experience lower conspecific densities
and thus higher survival. Depending on the exact dispersal and survival functions,
seedling densities may decrease, increase (McCanny 1985), increase and then de-
crease (Janzen 1970), or remain unchanged with increasing distance from parents
(McCanny 1985).

METAPOPULATION DYNAMICS Dispersal strategy has a very direct impact on a
species’s abundances and distribution among different subpopulations and its over-
all persistence in the whole metapopulation.

When patches are identical in suitability for the target species, dispersal rates
among patches, within-patch population growth rates, and patch-carrying capac-
ity alone will determine metapopulation dynamics since they determine rates of
colonization and stochastic extinction. Most theoretical studies have used island
models in which all patches (subpopulations) are equally connected through global
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dispersal. In these models, higher rates of dispersal alone lead to occupancy in
greater numbers of subpopulations, increased mean subpopulation and overall
metapopulation abundance, and longer-term persistence (Hanski 2001). Of course,
these effects may be diminished or reversed if dispersal is associated with increased
mortality (Hanski 2001). Spatially explicit metapopulation models in which disper-
sal rates among pairs of patches are distance-dependent provide additional insight
into the relative importance of fecundity, short- and long-distance dispersal on
colonization rates and thereby metapopulation dynamics. Higgins & Cain (2002)
use such a model to demonstrate that fecundity, interpatch distances, and the rates
and distances of LDD all had significant, interacting effects on colonization rates
and overall dynamics, while short-distance dispersal was unimportant. They in-
corporated a stratified dispersal kernel (see Theoretical Models of Seed Dispersal,
above), and their results imply that important gains in understanding can be made
by relaxing the standard assumptions. Metapopulations with restricted dispersal
and/or high degree of isolation can generate complex spatial patterns even in ho-
mogeneous environments (Hanski 2001).

When patches differ in such a way that competitive ability of a species varies
among them, these differences will interact with dispersal to determine metapop-
ulation structure and dynamics. Given stochastic and asynchronous variation in
conditions among patches, dispersal can be an effective bet-hedging strategy, po-
tentially allowing metapopulation persistence through dispersal from one tran-
siently favorable site to another, even when the expected growth rate in all local
populations is negative (Metz et al. 1983). Given fixed differences in conditions
among patches, dispersal between source and sink patches can provide the means
for a species to occur frequently outside the bounds of its fundamental niche
(Pulliam 1988). In such source-sink metapopulations, dispersal is strongly asym-
metrical from source to sink. Dispersal can provide a rescue effect (Brown &
Kodric-Brown 1977) for small populations (in either sink or source habitats) fac-
ing high risk of extinction. Less frequently, dispersal may increase extinction risk
of small isolated populations, especially in sink habitats, if the number of emigrants
exceeds the number of immigrants. Matrix population models can provide a useful
approach for approximating patch models in which colonization and survival rates
differ among patches and among successive early recruitment stages (Horvitz &
Schemske 1986).

GENETIC STRUCTURE Dispersal has profound effects on the genetic structure of
populations (Mal´ecot 1948; Wright 1943, 1969), and this can be used to infer the
phylogeographic structure of plants (Petit & Grivet 2002). In plants, genes are
dispersed either through haploid pollen or diploid seeds, and inheritance may be
maternal (e.g., chloroplast DNA in angiosperms), paternal (e.g., chloroplast DNA
in conifers), or biparental (e.g., nuclear DNA). Classical models of isolation by
distance (Kimura 1953, Wright 1943) have been used to analyze the development
of genetic structure of populations. In general, higher levels of long-distance gene
flow act to reduce local genetic correlation, while higher levels of short-distance
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gene flow act to increase it (Wright 1969). These models have been generalized in
various ways recently, for example to consider uniparentally inherited genes (Hu
& Ennos 1999) or local density-dependence (Barton et al. 2002).

Implications for Communities

Just as seed dispersal is important to population structure and dynamics, it also
is important to community structure and dynamics—specifically, to local species
composition and its spatial and temporal turnover. We can divide the effects of seed
dispersal on communities into two categories: those that result from general limits
to dispersal or migration ability in all species, and those that result from differences
among species in dispersal ability—differences associated with trade-offs between
dispersal ability and other traits. We refer to these as effects of overall dispersal
rates and dispersal trade-offs, respectively. These effects are clearly related, but
have distinct theoretical implications.

OVERALL DISPERSAL RATES The effects on community structure and dynamics of
overall dispersal or migration rates among local communities depend fundamen-
tally on the nature of local competitive interactions. In the extreme (neutral) case in
which all species are competitively equivalent, dispersal and speciation rates alone
determine local and global diversity patterns. In the opposite extreme of such strict
competitive hierarchies that only one species is suited for any given site, dispersal
has little effect on diversity.

In neutral models, increasing dispersal increases the number of species com-
peting for sites, increasing local community species richness and evenness (alpha
diversity, sensu Whittaker 1972) while decreasing turnover among communities
(beta diversity) and total metacommunity species richness (gamma diversity) be-
cause species can drift to extinction faster (Chave et al. 2002, Hubbell 2001). These
effects are exactly analogous to those found in neutral models in population genet-
ics discussed above. Building on those results (Kimura 1953, Mal´ecot 1948), we
can compute the expected species-area curves, relative abundance distributions,
rates of turnover in space, and other measures of community structure directly
from dispersal and speciation rates (Bramson et al. 1996, 1998; Chave & Leigh
2002).

As local community dynamics become less neutral, with increased local com-
petitive differences among species, dispersal rates become relatively less important
to diversity patterns but still can exert substantial effects. When species have com-
petitive differences that vary among areas, the effects of dispersal are weaker
than in the neutral model. Because continuing immigration can allow some lo-
cally inferior species to persist in areas where they would otherwise be eliminated,
local diversity can be enhanced in a community-level “mass effect” (Shmida &
Ellner 1984). Where local competitive ability is negatively frequency-dependent
(e.g., owing to life-history niche differences or negative density-dependent re-
cruitment), the effects of dispersal are stronger than in the neutral model because
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immigrants that represent locally new types are disproportionately advantaged
(Chave et al. 2002). In contrast, in communities in which local competitive dynam-
ics are positively frequency-dependent, increased dispersal is most likely to reduce
local as well as total diversity. Extensive dispersal among communities homog-
enizes species composition, and eventually makes competitive ability dependent
on global rather than local abundances, thus facilitating domination by the sin-
gle most abundant species (Amarasekare 2000, Karlin & MacGregor 1972, Levin
1974).

The importance of dispersal in real communities can be tested empirically in
a number of ways (Nathan & Muller-Landau 2000). The strongest test involves
experimental manipulation of seed dispersal patterns, but except for seed addition
experiments (which manipulate seed number as well as spatial pattern), such tests
are rare. Where experiments are impractical, simulations using empirically param-
eterized population and community models are a good alternative (Ribbens et al.
1994). Comparison of empirical population and community patterns with those
expected under models with varying influences of seed dispersal provides a final,
albeit weaker, means of assessing the relative importance of dispersal (Condit et al.
2002, Schupp & Fuentes 1995).

DISPERSAL TRADE-OFFS The models discussed above all assume that dispersal
rates are equivalent for all species; but in reality, seed dispersal varies widely among
plant species together with other characters. Not all trait combinations are found,
however—allocation and design limitations result in trade-offs that limit possible
combinations, and selection eliminates others. Strategic trade-offs between the
ability to disperse long distances and other traits can thus potentially enable niche
differentiation that contributes to stable, equilibrium, species coexistence.

Trade-offs between the ability to colonize new sites (involving high disper-
sal rates and/or fecundity) and the ability to compete for sites upon arrival have
long been hypothesized to contribute to stable species coexistence (Skellam 1951).
Theoretical studies have demonstrated how such trade-offs potentially can con-
tribute to ecologically (Hastings 1980, Tilman 1994) and/or evolutionarily (Geritz
et al. 1999) stable coexistence of many species by allowing competitively inferior
species to persist as fugitives in areas unoccupied by more dominant but less vagile
species. Importantly, such coexistence requires either strong competitive asymme-
try, as in the classic competition-colonization trade-off model in which sites held
by weak competitors are instantaneously taken over by arriving strong competi-
tors (Hastings 1980, Tilman 1994), or strong demographic stochasticity, insuring
that the superior competitor’s seeds do not reach all sites (Kisdi & Geritz 2003).
Alternatively, trade-offs between dispersal and other traits such as fecundity, may
enable equilibrium coexistence in spatially variable habitats (Yu & Wilson 2001).

There are a number of ways to test for the presence of competition-colonization
trade-offs among species and to evaluate their importance to community dynamics
and structure. The most direct and definitive test is experimentally to add seeds of
all species: If a competition-colonization trade-off is present, this should result in
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an increase in the abundance of a subset of species that are competitively domi-
nant and are ordinarily seen later in succession (Pacala & Rees 1998). Two studies
involving addition of seeds of multiple co-occurring grassland plant species both
found that seed addition increased the relative abundances of larger-seeded species
within the community (Jakobsson & Eriksson 2000, Turnbull et al. 1999). This is
in accordance with the idea that larger-seeded species are the better competitors
and the poorer colonizers, and that a competition-colonization trade-off medi-
ated by seed size drives successional patterns in this community (Pacala & Rees
1998). This idea is further reinforced by the finding (Moles & Westoby 2002) that
seed addition is more likely to increase abundance in larger-seeded species. The
presence of competition-colonization trade-offs also can be documented by ana-
lyzing correlations among relevant traits (Leishman et al. 2000). This is a weaker
test, especially since many such correlations, for example fecundity-establishment
trade-offs, can result in merely neutral dynamics (Yu & Wilson 2001).

EVOLUTION OF DISPERSAL

As we have seen, dispersal strategies have important implications for populations
and communities, and thus not surprisingly, for fitness. As a result we expect strong
selection on dispersal-related traits. Theoretical work on dispersal evolution has a
long history (Hamilton & May 1977, Van Valen 1971), and recent years have seen
an explosion of studies in this area (Gandon & Michalakis 2001) in part because
of the increasing ease of simulating ever more complex scenarios under which
dispersal can evolve. These theoretical studies have increasingly clarified how
different factors can affect selective pressures on dispersal, although there remains
a dearth of corresponding empirical work to test or parameterize theoretical models
(Ronce et al. 2001).

The payoff of a dispersal strategy depends fundamentally on the strategies of
other individuals in the population because these determine the number of competi-
tors encountered by dispersing and nondispersing individuals and their relatedness.
Thus the evolution of dispersal must be considered in a game-theoretic context.
We search for strategies that are evolutionarily stable strategies (ESS)—strategies
that cannot be invaded by any other strategy (Maynard Smith 1982). Further, to
be evolutionarily accessible via mutation by small steps under the standard as-
sumptions on quantitative genetic traits with continuous genetic variation, such a
strategy must also be an evolutionary attractor, that is, be convergence stable (Eshel
1983) and a neighborhood invader strategy (NIS), making it an ESNIS (Levin &
Muller-Landau 2000). Such strategies, and also (attracting) evolutionary branch
points, can be sought using methods of adaptive dynamics (Geritz et al. 1997).
Alternatively, genetic structure may be modeled explicitly, for example, in terms
of selection at one or more genes (Vincent & Brown 1988).

The major forces selecting for dispersal are kin competition, inbreeding depres-
sion, and spatiotemporal variability in environmental conditions. Because pollen
dispersal distances typically exceed seed dispersal distances and thus are much
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more important in determining the level of inbreeding (Ennos 1994), inbreeding
depression is likely to be relatively unimportant in selection for dispersal among
plants; thus we do not consider it further. Here we review work demonstrating how
the remaining factors contribute to dispersal evolution—work that helps explain
differences in dispersal strategies among species and the coexistence of multiple
dispersal types within communities. It is important to note that the optimal disper-
sal strategy will also depend on how dispersal trades off with other traits, and on
coevolution between dispersal and other characters.

Kin Competition

A universal advantage of a strategy incorporating dispersal over a strategy of no
dispersal is that dispersers can win sites from nondispersers, but nondispersers
can never win sites from dispersers (Hamilton & May 1977). Dispersal can allow
some individuals to escape competition with kin for the home site and instead
potentially compete with and take over sites held by unrelated individuals hav-
ing a different dispersal propensity. Thus, even in a model in which dispersal is
costly, in which there is no variation in environmental quality or crowding and no
inbreeding depression, non-zero dispersal rates will be selected. This result was
powerfully demonstrated by Hamilton & May (1977) using an island model of an
asexually reproducing annual plant species in which each patch had one individ-
ual. If dispersing individuals incur a survival reductionc (that is, they survive at
rate 1-c relative to nondispersing individuals), the ESNIS fraction of offspring to
disperse outside the parent patch,D, is

D = 1

1+ c
. (21)

Thus, if there is no cost to dispersal, all the offspring should disperse, and even if
dispersal is very costly (almost always lethal), half the offspring should disperse.

For more general island models having multiple individuals per site and differ-
ent breeding systems, the influence of kin competition on dispersal rates can be
assessed by considering the relatedness of individuals within and among patches
(Frank 1986, Gandon & Michalakis 2001). In general, as patch size increases,
relatedness within the home patch decreases, the benefits of dispersal for escap-
ing kin competition decrease, and thus the optimal dispersal fraction decreases
(Comins et al. 1980). Outbreeding reduces the optimal dispersal fraction because
it reduce relatedness within patches; indeed, for high cost of dispersal, the optimal
dispersal rate in outbred populations is zero (Hamilton & May 1977, Taylor 1988).

Qualitatively similar results hold for rates of dispersal under more realistic,
spatially explicit dispersal models. This was demonstrated early in stepping-
stone models—models in which dispersing offspring go only to neighboring sites
(Comins et al. 1980). As the number of sites to which dispersal occurs decreases,
relatedness between the home site and these sites increases, reducing selection
for dispersal. Thus, the ESNIS dispersal fraction declines as the spatial scale of
dispersal decreases (Comins et al. 1980, Gandon & Rousset 1999).
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If dispersal to different distances is controlled independently, then the evolu-
tionarily stable dispersal strategy is one in which the fitness gains of dispersal to
all distances is equilibrated (Rousset & Gandon 2002). In particular, Rousset &
Gandon (2002) show that dispersal is associated with two types of costs: the direct
cost paid by the disperser (in increased mortality or equivalent), and the indi-
rect cost due to competition with related individuals. At the ESNIS set of dispersal
strategies, the product of direct and indirect benefits should be the same at different
dispersal distances (Rousset & Gandon 2002).

An aspect of kin competition that has only recently received theoretical attention
is parent-offspring competition, although it was discussed early on by Hamilton &
May (1977). The potential for parent-offspring competition arises when there are
overlapping generations. When parents senesce—so that the probability of parental
mortality changes with age—there is selection for an increase in the dispersal
fraction with increasing maternal age (Ronce et al. 1998).

Spatiotemporal Variability in the Environment

Spatiotemporal variability in the environment leads to selection for increased dis-
persal, which allows for bet-hedging over uncertainty (Gadgil 1971). This is true
only, however, when the quality of the environment varies in both space and time.
Fixed spatial variation in habitat quality selects against dispersal when disper-
sal is not habitat-dependent, because dispersal tends to move individuals from
better habitats with higher abundances to poorer habitats with lower abundances
(Hastings 1983). Fixed, synchronous temporal variation alone also has no effect
on selection for dispersal in simple models (Ellner & Shmida 1981).

The effect of habitat variability in the absence of kin competition was first
demonstrated by Comins et al. (1980). In their island model of annual plants with
discrete, nonoverlapping generations, there are an effectively infinite number of
individuals per patch, and thus, relatedness within a patch is zero, and there is no
kin competition selection for dispersal. Each patch has a probabilityxof becoming
extinct in any given generation. Then the ESNIS dispersal fraction is

D = x

1− (1− x)(1− c)
, (22)

wherec is as before the survival cost of dispersal. Note that if dispersal is very
costly, then the optimal dispersal fraction approaches the probability of extinction
of a patch (Van Valen 1971).

Levin et al. (1984) extended this work to more general types of uncorrelated
environmental variation. They showed that for arbitrary stationary distributions of
environmental variation, identical among sites, the dispersal fraction will depend
on the normalized harmonic mean of the distribution of site quality. As long as
there is some probability of patch extinction, the dispersal fraction will always
be nonzero, no matter the cost of dispersal. However, if there is zero probability
of patch extinction (harmonic mean greater than zero), then there will be some
threshold dispersal cost beyond which the ESNIS is zero dispersal (Levin et al.
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1984). Chaotic population dynamics, which produce a special kind of endogenous
variation among patches, also favor dispersal (Holt & McPeek 1996).

While the above models support the intuitive conclusion that dispersal should
increase as environmental stability decreases, this need not always be the case.
Ronce et al. (2000) find conditions under which dispersal rates can decrease as
the extinction rate of patches increases. They relax the assumption that carrying
capacity is always reached in one generation, and thus allow for potentially multiple
generations of growth within patches (see also Levin et al. 1984 for an earlier
version of such a model). This increases the benefits of staying home, and thus
decreases the ESNIS dispersal fraction. Further, as the extinction rate increases,
more patches are below carrying capacity, and as a result, there is a region of
parameter space where dispersal rates decrease with increasing extinction rate
(Ronce et al. 2000).

Thus far, we have considered the effects of environmental variability only on
the potential for evolution of strategies of fixed dispersal fractions in the island
model—that is, the fraction dispersed does not change with local conditions. Yet
there is extensive evidence that in many systems, dispersal is dependent on local
density or habitat quality (Travis & French 2000). Such conditional dispersal
strategies will generally be advantageous whenever crowding varies among patches
(Levin et al. 1984, Metz & Gyllenberg 2001, Travis & Dytham 1999). Their
relevance to plant populations deserves further consideration.

Even more importantly, we must extend results on dispersal fractions in island
models to dispersal strategies in explicitly spatial habitats. In the past few years,
a number of studies have made this leap using spatially explicit simulation, and
most consider both habitat heterogeneity and kin competition together. Qualitative
conclusions regarding the effects of spatiotemporal variation are the same as in
island models (Heino & Hanski 2001). However, explicit spatial structure allows
for consideration of the effects of realistic levels of spatial autocorrelation in habitat
as well, and this has produced some novel results. In autocorrelated landscapes,
“fat-tailed” dispersal kernels are favored, while uniform distributions are favored in
random landscapes (Hovestadt et al. 2000). When spatial and temporal variability
exhibits red rather than white noise (increasing rather than constant variance with
time or distance), there is reduced selection for dispersal (Travis 2001). In models
with relatively constant spatial variation in landscape quality, different dispersal
rates evolve in narrow corridors and on the boundaries of good habitats than in
the centers of habitats, with potentially important implications for conservation
(Travis & Dytham 1999).

INTEGRATION AND FUTURE DIRECTIONS

The growing interest in dispersal is matched by increasing recognition of the value
of models in describing, exploring, and predicting dispersal processes and patterns
(Bullock et al. 2002, Clobert et al. 2001, Levey et al. 2002).



17 Oct 2003 16:22 AR AR200-ES34-21.tex AR200-ES34-21.sgm LaTeX2e(2002/01/18)P1: GCE

ECOLOGY AND EVOLUTION OF DISPERSAL 597

Phenomenological models fitted to data describe the pattern of dispersal dis-
tances, and the successes and failures of different models together have illuminated
the fact that the distribution of dispersal distances is generally strongly leptokurtic.
We advocate increased caution when inferring dispersal from patterns of establish-
ment: Pre- and postdispersal processes should be separated from dispersal because
they can significantly alter dispersal patterns. Yet, for the same reason, it is crucial
to investigate better how these three basic recruitment processes are interrelated,
e.g., how fecundity affects LDD and how LDD itself affects seed survival. Of
particular interest are habitat-specific seed deposition rates (see Dispersal Mech-
anisms and Spatial Patterns, above), which appear to be very important for many
species and have rarely been accommodated in any phenomenological models.

Mechanistic models have provided important insight into which aspects of
the dispersal process are most important in determining dispersal distances, in
general, and LDD events, in particular. In the case of seed dispersal by wind,
mechanistic models have demonstrated the importance of not only average wind
velocities but also the correlation structure of windspeeds, especially the incidence
of updrafts. Further development of mechanistic models, especially of seed dis-
persal by animals, is an important direction for future research. This requires, first
and foremost, a solid knowledge of the natural history of the relevant dispersal
processes—knowledge that can be used to inform decisions about which details
are crucial to include in the model and which are not. Model development also
requires high-quality data on the operative factors for parameter estimation and
on dispersal patterns at small and large scales for testing model predictions. The-
oretical tools and pre-existing models from probability theory, fluid mechanics,
animal behavior (e.g., optimal foraging theory), and other fields within and be-
yond ecology are likely to be useful in designing, simplifying, and solving (finding
closed-form solutions to) mechanistic models.

Theoretical studies of the implications of dispersal for range expansion, popula-
tion dynamics, and community structure, as well as of dispersal evolution, indicate
that the shape of the dispersal kernel is fundamental. Nevertheless, most conclu-
sions to date have relied upon very simplified, unrealistic models of dispersal, in
particular global, nearest-neighbor, or Gaussian dispersal models. This work has
provided qualitatively useful results, indicating that, in general, higher rates of
dispersal are associated with faster range expansion, presence in more subpopu-
lations, higher local diversity (genetic and species), and lower turnover in space.
Yet, further advances that more precisely characterize the importance of dispersal
depend critically upon models that incorporate realistic dispersal patterns, includ-
ing habitat-specific seed deposition. In addition, we emphasize the importance of
rigorous model assessment.

New technological advances promise to reduce the typically high uncertainty
involved with quantifying dispersal processes, especially those operating at large
scales, for a larger array of species and dispersal modes. Although the magnitude
of inherent (nonreducible) uncertainty (Clark et al. 2001) is unknown, a potential
for high inherent uncertainty does exist. This raises the question of how plants,
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facing high uncertainty in the behavior of the (external) dispersal agent, can still
gain some control over the distance their seeds travel and eventually their fate. Such
questions provide an important avenue for future theoretical studies, encompassing
both ecological and evolutionary aspects of seed dispersal research.
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