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Supporting Figure 4

Fig. 4. Seasonal histograms of the measured friction velocity ( ) during seed dispersal periods fitted to 
a Weibull distribution.

Supporting Figure 5

Fig. 5. Testing the Eulerian component of CELC against published canopy turbulence data [Finnigan, J. 
(2000) Annu. Rev. Fluid Mech. 32, 519-571] for a wide range of canopy morphologies ranging from 

sparse (LAI = 2 m2 m-2) to dense (LAI = 6 m2 m-2), short (h = 0.75 m) to tall (h = 30 m), and constant 
to heterogeneous leaf area density profile variation (left column). The canopies tested here include rice,
corn, aspen, loblolly pine, Scots pine, and a southeastern Hardwood forest (which is analogous to our 
study site).

Supporting Figure 6

Fig. 6. Sensitivity analysis for the modeled dispersal distances traveled by uplifted seeds Duplifted
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normalized by canopy height h, with respect to the dimensionless variable  for LAI = 1, 2, . . . 

,5, where  is the friction velocity above the canopy, Vt is the seed terminal velocity, and Hr is the 
mean seed release height. The solid line is the log-log regression to the model data.

Table 1. Shape and scale parameters of the Weibull distribution fitted to the friction velocity ( u*) 
calculated from wind velocity measurements recorded at 10-Hz at the tower, 40 m above the floor of 
a 33-m high forest

Period
Shape 

parameter b
Scale 

Parameter c R2

P

(slope = 0)

Nov 2 – Dec 7, 2000 0.34 1.33 0.94 < 10-5

Oct 19 – Dec 28, 2001 0.32 1.37 0.96 < 10-5

Nov 6 – Dec 30, 2002 0.40 1.48 0.96 < 10-5

Mar 29 – May 17, 2002 0.45 1.47 0.94 < 10-5

Nov 2, 2000 – Dec 30, 2002 0.36 1.37 0.96 < 10-5

Goodness of fit is evaluated by linear regression (measured = intercept + slope * modeled).

Table 2. Published canopy sublayer velocity measurements collected from a wide range of leaf area 
density, leaf area index (LAI), and canopy height ( h)

Canopy type h, m LAI, m m-2
Cd

Rice 0.72 3.1 0.2

Corn 2.21 2.9 0.3

Aspen 10.0 4.0 0.2*

Loblolly pine 14.0 3.8 0.2
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Scots pine 20.0 2.0 0.2

Oak-hickory-pine 23.0 5.0 0.15

The published drag coefficient Cd is also shown. All model calculations are conducted assuming 
standard atmospheric surface layer values for Au (= 2.7), Au (= 2.4), Aw (= 1.25) (e.g., ref. 1), and for a
= 0.06 (1).

*The value is assumed.

1. Finnigan, J. (2000) Annu. Rev. Fluid Mech. 32, 519-571.
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Supporting Methods

The Mathematical Description of the Coupled Eulerian-Lagrangian Closure

(CELC) Model

The primary objective of CELC is to generate instantaneous turbulent velocity excursions

to simulate the three-dimensional trajectory of wind-dispersed seeds and to estimate the

resulting dispersal kernels for a mean velocity (or shear stress) measured or specified

above the canopy. The averaging interval in CELC must be sufficiently long to capture

an ensemble of eddy turnovers in time, but sufficiently short so that transients in the

mean wind do not contribute to velocity excursions (i.e., all departures from time

averages are attributed to turbulence). Often, ½ hour averaging periods are deemed

optimum. For dispersal simulations longer than ½ hour, ½ hour measured *u above the

canopy are used to drive the model.

Notation Convention. Throughout, our notation convention is as follows. Subscripts

denote components of Cartesian tensors and both meteorological and index notations are

also used interchangeably (i.e., the components of x  are xx ≡1 , yx ≡2 , and zx ≡3 ) with

x , y , and z representing the longitudinal, lateral, and vertical axes, respectively;

iu denote the components of the instantaneous velocity vector u , with uu ≡1 , vu ≡2 ,

and wu ≡3 . Generally, index notation is commonly used in theoretical developments, but

meteorological notation is often used when reporting field-measurements or idealized

flow conditions.

We follow conventional meteorological notation to distinguish among different

methods of averaging. Angular brackets (e.g., < u >) indicate averaging over space, while

over-bar (e.g., u ) indicates averaging over time (e.g., over a 30 min period). Turbulent

fluctuations from the time-averaged quantities are denoted by primes (e.g., u’). Based on

this convention, recall that the axes are rotated every 30 min so that the longitudinal

direction ( 1x ) is aligned along the mean wind direction and that v  = 0.



The trajectory of a seed having a known terminal velocity tV  and released at time

to from position )( oi tx is given by:
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where ui are the instantaneous velocity components, dt is the time interval, and δij is the

Kronecker delta given by:
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(i.e., tV only applies to the vertical component).

The Lagrangian Component. After Thomson’s (1) seminal work, Lagrangian stochastic

models for the trajectories of particles in turbulent flows are now routinely used in

computational fluid mechanics and turbulence research (2). These models are derived

using the so-called well mixed condition (wmc), which states that if a concentration of a

scalar material is initially uniform at some time to it will remain so at any future time t in

the absence of sources and sinks. The well mixed condition is considered the most

rigorous theoretical framework for computing Lagrangian trajectories and ensures

consistency with prescribed Eulerian velocity statistics. Using the wmc, Thomson (1)

showed that in a vertically inhomogeneous turbulence, a set of three stochastic

differential equations for the velocity components, given by:
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can be used to model the turbulent excursions, where ui’ are the (instantaneous) turbulent

velocities at position xi and time t, C0 (≈  5.5) is a similarity constant (related to the

Kolmogorov constant) and λ11, λ13, λ22, and λ33 can be derived by inverting the Reynolds

stress tensor, and are given by:
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Here, >< 1u  is the mean longitudinal velocity (defined so that 02 >=< u ), < 11uu ′′ >( =

σu
2), < 22uu ′′ >( = σv

2) and < 33uu ′′ >( = σw
2) are the variances of the three velocity



components, < 31uu ′′ > ( = < uw ′′ >) is the Reynolds stress, and >< ε  is the mean turbulent

kinetic energy dissipation rate (3, 4). To compute ijλ , it is necessary to model (or

measure) the vertical distribution of the flow statistics >< 1u , < 11uu ′′ >, < 22uu ′′ >, < 33uu ′′ >,

< 31uu ′′ >, and >< ε  (Fig. 1). These statistics can be readily computed from Eulerian

second-order closure models (5-9). With these velocity statistics, and for the purposes of

estimating dt , we define the relaxation time scale (TL) by
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=

ε
σσσ 2225.0 wvu

LT

and set LTdt 01.0=  in all model calculations. This estimate of dt satisfies all of the

theoretical constraints discussed in ref. 1.

The Eulerian Component. To determine >< 1u , 2
uσ , 2

vσ , 2
wσ , < uw ′′ >, and >< ε  for

the Lagrangian calculations (Fig. 1) using measured leaf area density and *u , the

Massman and Weil (8) Eulerian second-order closure model is used.

The Massman and Weil Analytical Model. Assuming an exponential mean velocity

profile for hz / < 1, given by
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The Massman and Weil model (MW99) computes the zero displacement height from the

centroid of the momentum sink using:
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For this study, we used the long-term sonic anemometer data above the canopy during the

dispersal seasons and determined that 1.2=uA , 8.1=vA , and 1.1=wA . All of the

remaining model parameters of the MW99 formulation can then be determined from

these three constants. The estimate of oz guarantees that a discontinuity in >< u  does not

exist; however, it does not guarantee a well defined dzud / at z/h = 1. This is

understandable as the leaf area density is also discontinuous at z/h = 1.

With this model formulation, the leaf area density affects ς and hence >< 1u ,
2

uσ , 2
vσ , 2

wσ , < uw ′′ >, and >< ε  profiles, which then can be used to update λ11, λ13,



λ22, and λ33 and the parameters of the Thomson (1) model if *u above the canopy is

known.

Input Parameters for CELC. The needed parameters for CELC are the leaf area density

profile, an estimate of the drag coefficient (assumed = 0.25 here), the measured *u or

>< 1u above the canopy every ½ hour, the seed terminal velocity and release height. The

leaf area density was measured by a Licor LAI 2000 canopy analyzer, the drag

coefficient was estimated from Katul et al. (10), and the >< 1u above the canopy was

measured using a triaxial sonic anemometer at 10 Hz and averaged every 30 min. The

other biological parameters needed in the Lagrangian component of CELC were

estimated as follows.

Trees were mapped on a 2.5-m grid, and measured for DBH (diameter at a height

of 1.3 m). Adults were defined as those having DBH ≥15 cm for all species except C.

caroliniana, for which we set a threshold of 7 cm. For a sample of at least 15 adult trees

of each species, we measured tree height, and fitted least square semilogarithmic

regression against basal area. Slopes of all regressions were significantly greater than

zero (P < 0.001 in all cases) and basal area explained 61–85% of variance in tree height.

We estimated height from basal area using the fitted function for trees whose heights

were not measured. For each species, we estimated the vertical distribution of seed

release by counting seeds or inflorescences along tree height for at least five trees. On the

basis of these observations, we calculated the mean release height. The mean and

variance of seed terminal velocity was measured by analyzing video photos of falling

seeds (collected at the study site) in a closed room in the laboratory with still air

conditions, for at least 100 seeds per species.

Computations of Seed Dispersal with CELC.  The calculation of seed trajectories

proceeds as follows:



1. The flow statistics >< u , >′< 2u , >′< 2v , >′< 2w , >′′< wu and ><ε are calculated

by the MW99 model using the measured leaf area density, assumed drag coefficient ( dC

= 0.25), and the measured friction velocity ( *u ) above the canopy every 30 min.

2. The terminal velocity for each dispersal event was randomly selected from a Gaussian

distribution, following previous generalizations (11, 12), based on the measured mean

and standard deviation for each species. The number of seeds released per tree for each

30-min period was constant, and was assumed to be linearly proportional to the tree basal

area (13). The overall number of dispersal events simulated for each season was of the

order of 106-107 seeds per species. The vertical distribution of seed release heights was

assumed to follow a Gaussian distribution around the estimated mean release height, and

the standard deviation was bounded symmetrically by the distance from the tree top to

this centroid.

3. Given a specified seed release coordinates and terminal velocity, the concomitant

velocity fluctuations and seed trajectories are calculated from Thomson’s model using the

flow statistics in step 1 with 1x aligned along the measured mean wind direction above the

canopy for this 30 min interval.

Testing the Stationarity of the Friction Velocity During Dispersal Seasons and

Across Years

To test whether the friction velocity ( *u ) above the canopy is stationary, we computed its

histogram for each dispersal season using ≈2 months of 30-min *u data (i.e., >750 data

points). Each histogram was then fitted to a 2-parameter Weibull probability density

function (pdf), given by
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where b and c are shape and scale parameters, respectively. Hence, if b and c  are

approximately the same across dispersal seasons and years, then *u , the key forcing



variable to dispersal, can be treated as stationary. Using maximum likelihood techniques,

these two parameters were fitted by solving two nonlinear equations:
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where )(* iu ( =i  1, 2, …n) are the measured *u time series, and n  is the number of

*u measurements per period (2 months). The Weibull distribution was chosen in favor of

other alternative functions because of its broad usage in numerous applications including

wind atlases (14), wind energy (15), fire spread (16), and climate change (17).

The Weibull function fitted very closely the measured *u  time series (Fig. 4) for

each period (Table 1; R2 values ranging from 0.94 to 0.96; P(slope = 0) < 10-5 in all cases).

The observed and fitted histograms for the 5 periods (Fig. 4) and the fitted values of the

shape and scale parameters (Table 1), clearly show that the seasonal variation in *u  is

minor as compared to the 5-fold (1 to 5) seasonal variation in LAI. Thus, as first-order

approximation, *u , the key forcing term in the CELC model, can be considered as

stationary with respect to the seasonal variation in foliage density.

Testing the Massman-Weil Eulerian Model for Various Canopy Types

To verify whether the Eulerian component of CELC correctly describe wind flow

patterns under the widest possible range of foliage densities, we assembled data from six

studies carried out in a variety of ecosystems (Table 2). These data sets cover both sparse

and dense canopies (LAI ranged from 2 to 6 m2 m-2), short and tall canopies (h ranges

from 0.75 to 30 m), and simple and complex leaf area density distribution; for example,

the leaf area density profile of a rice canopy is known to be nearly constant, while that of

a loblolly pine forest is usually erratic (see refs. 5 and 9 for examples).



We also tested the Eulerian model against wind data collected in our study site.

For this comparison, we focus on two approximate ends of the expected LAI variation in

a typical temperate deciduous forest: late fall season (November) with low foliage density

(LAI = 1.6 m2 m-2) and mid summer season (August) with full foliage (LAI = 4.8 m2 m-

2).

The comparisons between measured and modeled flow statistics for canopies that

differ substantially in their structural and morphological attributes (Table 2) demonstrate

the model’s ability to reproduce the key features of wind flow patterns (Fig. 5; R2 values

ranging from 0.60 to 0.92 for the four flow statistics, P(slope = 0) < 10-5 in all cases). We

also found good agreement between the measured and modeled flow statistics for our

study site (R2 values ranging from 0.71 to 0.93, P(slope = 0) < 0.01 in all cases). Altogether,

these results show that CELC’s Eulerian component is able to relate variation in foliage

density, as represented by LAI, to the corresponding variation in the major flow statistics.

Sensitivity Analysis on Mean Dispersal Distance of Uplifted Seeds ( upliftD )

From the log-log plots in Fig. 6, the mean distance traveled by uplifted seeds ( upliftD< >,

angular bracket is averaging over all dispersal distances for seeds that experienced

uplifting) were shown to be well approximated by power laws of ξ  = 
h

Hr
V
u

t

* , with a

multiplier that depends on LAI.

Mathematically, the dependence in Fig. 6 can be expressed as a family of curves

given by
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where β is an exponent, 1C is a constant, and )(LAIf is a scaling parameter.



Based on linear regression analysis of the data in Fig. 6, we found that the 95%

confidence intervals for β lie between 0.93 and 1.09. That is, β is sufficiently close to

unity. Hence, in a first order analysis, we assume 1=β . We also found that

( )LAILAIC ×−≈ 15.02)](log[ 2  (R2 = 0.93) for LAI ranging from 1 to 5 thereby

simplifying the above equation for >< upliftD to

t
uplift V

Hru
LAIExpD *)15.02( ×−>=< . [4.2]

Hence, with this approximate formulation for >< upliftD , it is possible to execute a formal

sensitivity analysis on how the relative changes in each of the key variables impacts

>< upliftD . Using the chain rule,
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Using 4.2 to compute the partial derivatives, we obtain:
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Note that expression 4.4 is related to changes in LAI directly. The reason why LAI does

not appear in the denominator is due to the exponential dependence of >< upliftD  on LAI.

If the differentials are approximated by differences, then
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where ∆ indicates a difference or an increment.



Expression 4.5 permits us to assess the most important variable affecting upliftD

given the natural variability in *u , rH , tV , and LAI, as reflected by the range of the

observed parameter values as measured for our study species and site. We emphasize that

this exercise does not reflect the entire spectrum of dispersal events but focuses only on

the small number of uplifting events. This analysis should therefore be viewed as

addressing the following question: given that a seed has been uplifted, what is the relative

importance of different operative factors in determining the distance it travels?

Based on model simulations, uplifted seeds cover almost the entire measured tV

spectrum, as has been empirically observed (18, 19); hence, we can assume that ∆ tV  ≈

0.8 m s-1 (0.7 to 1.5 m s-1), with an average of 1.0 m s-1. Seeds are uplifted mostly from

the upper third of the forest canopy, ∆ rH  ≈ 1/3 (2/3 h to h). Summary of *u values of

uplifted seeds in the simulations gives ∆u* ≈ 1.4 m s-1 (0.5 to 1.9 m s-1), with an average

of 0.8 m s-1. Finally, given the seasonal variability in LAI (Fig. 1), ∆LAI ≈ 4 m2 m-2.

Hence, when we combine these order of magnitude estimates, the effects of *u , rH , tV ,

and LAI on upliftD  are approximately
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Fig. 4. Seasonal histograms of the measured friction velocity ( *u ) during seed dispersal 220 

periods fitted to a Weibull distribution. 221 

 
Fig. 4. Nathan and Katul (Supporting Material) 223 
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Fig. 5. Testing the Eulerian component of CELC against published canopy turbulence data in 264 

(4) for a wide range of canopy morphologies ranging from sparse (LAI=2 m2 m-2) to dense 265 

(LAI=6 m2 m-2), short (h=0.75 m) to tall (h=30 m), and constant to heterogeneous leaf area 266 

density profile variation (left column). The canopies tested here include rice, corn, aspen, 267 

loblolly pine, Scots pine, and a southeastern Hardwood forest (which is analogous to our 268 

269 
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Fig. 6. Sensitivity analysis for the modeled dispersal distances traveled by uplifted seeds 356 

upliftedD  normalized by canopy height h , with respect to the dimensionless variable 
h
u

V
H

t

r *  for 357 

LAI = 1, 2, ..,5, where *u  is the friction velocity above the canopy, tV  is the seed terminal 358 

velocity, and rH  is the mean seed release height. The solid line is the log-log regression to 359 

the model data. 360 

 361 
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